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Statistical Mechanics is a mathematical tool in large areas of science which involve large systems 

with numerous variables. Saying that statistical mechanics is a theory of gases is like saying calculus 

is the theory of planetary orbits. In the most general form it is the same as probability theory, there 

is no general line drawn between when it is used to describe reality (as this is when it is called 

statistical mechanics). 

In these notes, for simplicity we work in units of Boltzmann constant, k, equal to 1. Therefore we 

have two simple relations: 

      

  
 

  
 

That can be used to convert from my units to text book units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[STATISTICAL MECHANICS] February 24, 2013 

 

 

 

 2
 

Stationary systems 

Systems that have no laws of motion, they simply remain stationary. 

Coin flipping 

Consider a fair coin (by fair a mean it is completely symmetric, in its mass distribution etc.). We will 

disregard the effects of air resistance and any external forces (except gravity of course) during our 

discussions. The probability of getting a Head is the same as getting a Tail, a half, this shows uniform 

probability. 

This brings us on to the concept of an a priori probability. This simply means that we use logically 

arguments to come up with the probabilities [1], for example a system with N possible outcomes 

which are mutually exclusive (they do not interact with each other, this is the essence of what I 

mean by stationary systems), the probability of obtaining one of the possible outcomes is 1/N if the 

probabilities are uniform (notice that this could also mean that we do not know anything about the 

system, as we shall see in the coming chapters).  

6 sided die 

Consider a fair die with a six sided symmetry with different colours painted on each of the sides. 

 

 

 

In the figure there are of course three other colour on the sides that are not seen. Let’s say the six 

colours are: Red(R), Green (G), Blue (B), Orange (O), Yellow(Y), and Purple (P). 

As we did with the coin, we neglect external affects and assume the die is symmetric. Once again by 

the same logic we arrive at the a priori probability of 1/6 for any of the colours to be chosen. This 

might seem trivial and you might ask what the point of discussing another case is, however now 

consider a die that has instead of purple another red side. Therefore there are now only five colours: 

R, G, Y, O, and B. so one might assume that from the same logic the probability of picking out the any 

colour at random will be 1/5. However in the case of die we know this nonsense, as the probability 

would be 1/3 to pick out a red side and 1/5 to have another other colour. This shows the nature of 

how we determine the a priori probability; we must in the case look at the symmetry of the sides of 

the die and not the symmetry in the colour. This will become clearer as we discuss further these 

topics and generalise this topic.   

Another way to find the a priori probability is to flip the die a very large number of times, this would 

also give as the probability stated above (of course in practice we would have to do the experiment 

an infinite number of times to get the exact probability). During this entire discussion the key 

component missing is change with time. We have assumed time symmetry (basically means the 

system is not changing), and this brings us on the next section of Dynamical systems. 

 

Figure 1 
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Dynamical Systems 

A dynamical system changes with time subject to some laws of motion; these could be Newton’s 

Laws, Kepler’s Laws etc. (however we may not use this to describe quantum phenomena as quantum 

mechanics follows a different logic to classical physics, mainly because it is not deterministic). 

Laws of motion (LOM) 

A law of motion can be thought of simply as an updating process. Given a system in an initial 

configuration the law just takes it into the next configuration in the next time interval. 

LOM 1 

Imagine dividing up time into equal segments and the die, described above (shown in Figure 1), 

updating itself in each of the given time segments. We can write a LOM for the die such as if the 

colour on the top of the die is Red, it goes to Purple, for simplicity I could represent this as R-> P. 

Therefore the LOM I have could be something like: 

    

     

    

    

     

    

This is our LOM 1; it can also be represented by a mapping:  

 

 

 

This is a simple dynamical theory of the 

die. If we say the die changes very rapidly, 

therefore the rate of the cycle above is very fast (the time intervals between adjacent intervals is 

very short), then the  a priori probability of picking out any colour of the die is simply 1/6 as we had 

in the stationary case. 

 

LOM 2 

Now we suppose that our law of motion follows the following rule: 

    

Red 

Purple 

Blue  Green  

Orange  

Yellow  

Figure 2 
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Do you notice anything different about the system? Maybe it will be clearer when we draw the 

mapping between the configurations: 

 

 

 

 

 

As we can see, the law divides the system into two separate cycles. Therefore we cannot calculate 

an a priori probability for this system if we have no information as to which cycle it is in (this is after 

we have waited for a sufficiently long time, in this case it has to be longer than the time interval 

between the changes in the configuration of the system). Suppose the probability of being in either 

of cycles is a half (they are symmetric), then with the same assumptions as the stationary case we 

get the probability of any colour to be obtained is again 1/6 (1/2 * 1/3), however in general this is 

not the case.  

Conserved Quantities 

This difference can be seen from a different angle as this LOM having a conserved quantity. This is a 

very important idea in statistical mechanics as all of the probability distributions can only be found 

with conserved quantities. This might seem an abstract way to go about it, but it will probably make 

more sense when we talk about some physical examples.  

If we define our conserved quantity as Ð and say that it has a value of 1 for cycle 1 (I define this to be 

the cycle in figure 3) and a value of 0 for cycle 2 (the cycle in figure 4). Mathematically it means: 

            

            

If I am saying that Ð is a conserved quantity then it will always have the same value, that is to say 

that if it is 1 then it will remain as that, which clearly means that the configuration of the system will 

remain in cycle 1, once it has been measured to be in 1(this is called a closed cycle). This now leads 

Red 

Blue   

Green  

Figure 3 

Purple 

Orange  

Yellow 

Figure 4 
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to an a priori probability as the system is now symmetric and finding the system in any of the three 

configurations has a probability of a 1/3. 

In general a conserved quantity means that a system breaks up into different cycles which have 

different values of the conserved quantity. It is important to remember that when we talk about 

separate cycles or orbits we are not talking about them in regular coordinate space; it is in phase 

space (the space of states).  

In physics the most important conserved quantity is Energy. Momentum and angular momentum we 

do no talk about as much in thermo dynamical descriptions, because we are usually talking about 

gases or liquids contained in containers. Therefore a gas molecule collides with the walls and the 

momentum of the wall is usually neglected (it’s like throwing a tennis ball at a wall and disregarding 

the recoil of the wall and the earth) therefore conservation of momentum does not hold. Electric 

charge is another conserved quantity.  

I will end this section by giving an example of a conserved quantity applied to a physical system.  

Two Dice 

Consider two usual dice with six numbers on them, except this time they interact with each other. 

 

 

 

 

 

 

As one flips, so does the other but we constrain the fact that as they flip the sum of the two 

numbers that appear on top of each die must be equal. That is to say, if 2 and 5 are on top of the die 

initially then the configuration can be 4&3, 3&4, 6&1 and 1&6. This is a conservation law for the sum 

of the numbers on top of the dice. We can call this conserved quantity  , the values that it can have 

are 2,3,4,5,6,7,8,9,10,11,12. Each of these values has an associated cycle with them with different 

number of configurations within the cycle. The state(a given value of  ) which has the most number 

of possible configurations is the most likely outcome in a random trail.  For example 12 has only one 

possible configuration, therefore it is very constraint and less likely in a random trail (any one has a 

played monopoly knows this and why it is so hard to get out of jail!). 

 

 

 

 

1 

2 

3 

Figure 5 

4 6 

5 

Figure 6 
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Information 

This is probably (pardon the pun) the most important section I will write about and the deepest 

foundation on SM (it is also the deepest foundation of classical mechanics). We tart of by 

considering a new law of motion: 

LOM 3 

    

    

    

    

    

    

This is a valid system under a given LOM, however as we see all the configurations go to one 

configuration under this LOM. As a map we have: 

 

 

 

 

 

 

 

 

 

 

 

 

No matter when you sample (as long as it is after the time interval for one process), you will always 

find R. This system is not representative of any real physical system as it does not conserve 

information. A real physical system has a property of “conservation of distinction” or “conservation 

of information” (both mean the same thing). This means that a system must be deterministic, which 

this system is, and the distinctions don’t merge, which happens in our system. 

Red 

Yellow  

Orange 

Green  

Purple 

Blue 

Figure 7 
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From figure 7 we can see that every configuration will definitely (with probability 1) lead to another 

configuration, therefore it is deterministic. However once the configuration has reached red, there is 

no way to tell what configuration the system was in before.  This means some information has been 

lost, which is not allowed in any physical system, it can be summed up in the statement; “Input gives 

Output but Output does not give Input”. The entire theory of classical physics is based on the 

assumption of the conservation of information. The theorem that proves this called Liouville’s 

theorem (Basically that the mapping between any two configurations is 1 to 1).  

A classical system is always deterministic, it only appears statistical because of the large number of 

variables mean that we simply cannot know enough, but if we could know all the variables we 

should be able to determine every possible configuration the system will be in at any given point in 

time.  

In essence, the conservation of information is the deepest of the laws of thermodynamics and hence 

I will call it the -1st law of thermodynamics.  

Example: Single particle  

In classical mechanics we usually deal with continuous variables. Therefore we consider a single 

particle moving through space with a given momentum. The configurations of the particle can be 

labelled by the position and momentum at any given instance in time. Therefore we can map out its 

trajectory on a graph, which is known as the phase space of the particle (not be confused with 

ordinary coordinate space). 

The phase space is six dimensional as there are three values to describe its position (x, y and z) and 

three values to describe its momentum (px, py, pz).  

 

 

 

 

 

 

 

 

The phase diagram just has two axes that is because I don’t know how to draw a 6 dimensional 

space! 

We see that the trajectory can take any path; it can even come back to the same point as it started. 

What it cannot do is cross over itself at any point, to see why consider the following diagram: 

 

x 

px 

Trajectory  

Figure 8 
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When the particle reaches point A, it has two options it can either go left as we see it or continue to 

go down and since we have no other information about the particle (other than its trajectory and 

momentum) it could go either way. This means the trajectory is not deterministic, which is not 

possible.  

What usually happens in a complex system with conserved quantities is that there are several 

different trajectories that correspond to different values of the conserved quantity. 

Example: Harmonic Oscillator 

A harmonic oscillator can be drawn in a phase space such as the one in figure 8 and it would look 

something like this: 

 

 

 

 

 

 

 

Here the trajectories correspond to different values of the conserved quantity which is energy. It is 

easy to see that the blue ellipse corresponds to a higher energy value than the other two.  

Note: To plot trajectories we need the initial condition of the system as well as the LOM acting on it. 

Another trajectory that cannot happen physically is when the two trajectories come infinitely close 

to together, that is they show asymptotic behaviour. As this would mean that if we wait sufficiently 

long then they would merge and once again become non deterministic. 

I will now briefly explain what Liouville’s theorem is and why it is so important. 

 

 

 

Point A 

Figure 9 

x 

px 

Figure 10 
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Liouville’s Theorem 

Suppose we have a phase space with of position and momentum and the space of states for a given 

system occupy a given volume in this phase space (It is important to note that the volume in this 

phase space is NOT the volume of coordinate space, infact the volume of a phase space has units of 

length cubed times momentum cubed which is the unit for action, as supposed to length cubed for 

the volume of coordinate space): 

 

 

 

 

 

 

 

 

Liouville’s theorem states that after any given amount of time the system might have a different 

configuration of states however the volume occupied by the space of states is always the same, as 

shown in figure 11. The volume of phase space is conserved, which is the same as stating the -1st 

Law. In reality with complex systems, the space of states usually ends up as some very complicated, 

fractalated, volume of states such as: 

 

 

 

 

 

 

 

 

I should stress that even though in the diagram the lines in volume two of figure 11 look like they 

come asymptotically close, they do not really as that is forbidden, it is just my poor drawing. This is 

called chaos and is indeed the foundation of chaos theory. 

Note: In all of these cases topology is also always conserved. 

x 

px 

Figure 11 

Initial volume: 𝛾 

Final volume: 𝛾 

x 

px 

Figure 12 

Initial volume: 𝛾 

Final volume: 𝛾 
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The axioms for Liouville’s theorem are Hamilton and Langrangian equations of motion and the 

principle of least action. Subject to a conserved quantity, like energy, the a priori probability is 

uniform in the given phase space. To summarise this theorem; Subject to a conserved quantity, like 

energy, the a priori probability is uniform in the given phase space.  
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Entropy 

We start by discussing probability distributions. They can be either continuous or discrete and are 

normalised with the following equations: 

∫ ( )                 

∑ ( )             

The average value (also known as the expectation value) of a discrete function, say  ( ) is given by: 

 

      ∑ ( ) ( ) 

Suppose we have a system and all we know about it, is that the configuration of the system is in one 

of   states. On a graph it looks like: 

 

 

 

 

 

 

 

 

With no other knowledge, all we can say that the probability of finding a given state is 1/m (height of 

the probability in this region). This can also been seen as the measure of ignorance (how much we 

don’t know about the system), in this case m is measure of our ignorance. Infact any monotonic 

function of m will be a measure of our ignorance. The function we use to define entropy is the 

logarithm of the m. Entropy is defined microscopically as: 

      ( )       (
 

 
) 

The base of the logarithm can be chosen arbitrarily depending on what field we are using it in (the 

change between bases is a trivial one; therefore we can choose which ever one for our 

convenience). In physics we usually use the base e, in computer science base of 2 is used as they 

work with binary systems. 

Example 
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Figure 13 
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Suppose we have N coins, each of which has to possible outcomes heads (H) or tails (T) and suppose 

we know nothing about the system (complete ignorance). 

The numbers of possible configurations are 2N (as each coin can have two outcomes and there are N 

coins). Taking the logarithm we have Nlog(2), which is the entropy. Now we see that the entropy is 

proportional to the number of coins itself, therefore we can talk about the entropy that every coin 

has. In this case the entropy per coin is simple log(2). Entropy is microscopically measured in units of 

bits. 

Another interesting example would be to say; what happens when we know everything about the 

system? 

The answer is of course that there is no ignorance and therefore no entropy. We can also see this 

from the mathematics, as know the space of states simply has one configuration (then one we know 

it’s in) and therefore the entropy becomes proportional to the log(1) which is always 0, no matter 

what the base is. 

There is something very odd here, as if you think about it, entropy isn’t just something that depends 

on the system. It is also a measure of how much we know about the system; therefore it seems 

strange to think of it as a conserved physical quantity (unless we consider ourselves part of the 

system, like in quantum mechanics a measuring apparatus is considered part of the system it is 

measuring in an entangled state). 

Now we are ready to make a general definition for what entropy is. It depends on the probability 

distribution we have for a system, which can be affected by what we know about the system as I 

stated above and the conserved quantities within the system, like in the case of the two dice we saw 

that each possible value of the conserved variable has its own probability distribution. As we are 

making a general definition, consider any given probability distribution (discrete or continuous): 

 

 

 

 

 

 

 

 

Lets say the function we are interested in is  ( ). We can calculate the average value of it by: 

  ( )     ∫ ( ) ( )   

However we know that whatever we know about  ( )is given by its entropy, therefore we get: 
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Figure 14 
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     ∫ ( )    ( ( ))    

This is the most general form of describing the entropy. 

We can apply this to the square distribution described previously. The probability of picking out any 

given state was 1/m, therefore we obtain the following equation: 

     ∫
 

 
   (

 

 
)   

It is easy to see now that if we integrate over m (as that is the region in which the probability 

distribution lies), we get the same relation as we did before for the entropy: 

        (
 

 
) 
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Temperature 

Let’s postulate some called thermal equilibrium for a system (of course this is what it means, 

however we are doing it from first principles) and define it to be: 

A property of a small system to contact with a much larger system (such as a heat bath). It cannot be 

a property of an isolated system. 

Consider a heat bath with a small thermometer in it, we label the systems B and A respectively: 

 

 

 

 

 

 

 

The bigger system B can be thought of as a closed and isolated system, which just means that energy 

cannot flow in our out of it. The two systems together can be thought of as isolated but not own 

their own.  

The systems A and B can weakly interact with each other (they can exchange energy), therefore if we 

wait for long enough the systems will each reach the same temperature and this is what we call 

thermal equilibrium. 

If we consider this same situation in a phase space, then the phase space of the combined system 

has the configuration which has a constant energy, however each of the systems individually can 

move around with various configurations in there phase space (that could equally mean the 

different values of energy), for example for system A we have a probability distribution of its states 

that looks like: 
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B 

Figure 15 
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The entropy is given by: 

       ( ( )) 

Now we can ask how much energy is needed to change the entropy by 1 bit: 

    

  
 

In general this is multiplied by the value of one 1 bit, this quantity given in the equation above is 

defined as temperature (I must add that all these equations have a factor of    missing for 

Boltzmann’s constant missing, which should be added in front). 

This has a striking application when thought about carefully, as it shows’ manipulating any bit of 

information creates a change in temperature. This is a concept widely known in computer science 

and more specifically information theory. It was first thought about by Rolf Landauer and it holds 

that “any logically irreversible manipulation of information, such as the erasure of a bit or the 

merging of two computation paths, must be accompanied by a corresponding entropy increase in 

non-information bearing degrees of freedom of the information processing apparatus or its 

environment"[2] .  

Landauer's principle asserts that there is a minimum possible amount of energy required to change 

one bit of information, known as the Landauer limit: 
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Lagrange Multipliers 

In statistical mechanics we are always looking to minimise or maximise (mathematically they are 

both represented by the same thing) functions of various variables subject to constraints. We are 

likely to maximise quantities like entropy (in thermal equilibrium entropy is maximised). Constraints 

could be things like we happen to know the total energy of the system, or the average energy, or the 

electric charge etc. The method of Lagrange multipliers (also known as method of undetermined 

coefficients) is a useful way to achieve these points, but it is not the only way.  

If we have a function  (   ) and we want to find the stationary points of it subject to a given 

constraint  (   ) 

The method is straightforward: 

Multiply the constraint by a constant, usually called   (the Lagrange multiplier) 

   (   ) 

Add the constraint to the function 

 (   )    (   ) 

Differentiate this new function with respect to both x and y and set it to zero for the stationary point 

  (   )

  
  

  (   )

  
   

  (   )

  
  

  (   )

  
   

These equations can now be solved in terms of   and then the value of   is chosen by the fixing the 

constraint to it. 

This might seem an odd way to solve an equation as we just have two equations here and two 

unknowns, therefore we should be able to solve them by substituting one into the other and it might 

seem strange that we are introduction yet another variable  . However in general we could have 

equation with n variables in which case it would be extremely difficult to solve them by substituting 

them into each other, if we use the method of Lagrange multipliers we simply  have to use the same 

method just with      multipliers and this is generally easier, however they both should give the 

same answer.  

Why it works? 

In general  it can be shown that solving by substitution is essentially the same, consider once again 

the two functions F(x,y) and G(x,y) where G(x,y) is the constraint: 

 (   )    

Now imagine solving G for the variable y, this will give us y as a function x: 

   ( ) 
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Now we can substitute this back into the function F: 

 (   )   (   ( )) 

We can differentiate this in the form: 

  (   ( ))

  
  
  (   ( ))

  

  

  
   

Now consider the constraint function G(x,y), since it is a constraint, by definition it is constant, 

therefore: 

  (   )

  
    

  (   )

  
     

This can be rearranged to give: 

  

  
   

  (   )

  
 

  

  (   )
 

Now we can substitute this equation into the one above for the function F: 

  (   )

  
  
  (   )

  
 
  (   )

  
 

  

  (   )
   

This can be rearranged as: 

  (   )

  

  (   )

  
 
  (   )

  

  (   )

  
 

Now if we take the two equations given for the Lagrange multipliers: 

  (   )

  
  

  (   )

  
   

  (   )

  
  

  (   )

  
   

And solve for   in one of them: 

    

  (   )
  

  (   )
  

  

Substituting this into the other equation we get: 

  (   )

  

  (   )

  
 
  (   )

  

  (   )

  
 

Which is the same equation that we obtained from the substitution method 
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Example 

Now we can see this in action with an example, consider the functions: 

 (   )        

            (   )        

I can map this to give some visual representation of the problem we are solving (I have chosen these 

functions for this reason!) 

 

 

 

 

 

 

 

 

 

 

This map shows the function F(x,y) as the circle and the constraint represented by the straight line 

and the solutions we are looking for the points that lie on the red section of the line. 

Now we can solve the constraint for x: 

       

This can now be substituted into the equation F(x,y): 

 (   )     (    )  

Differentiating we get: 

  (   )

  
     (    ) 

For stationary points we get this equal to zero (remember F is the function we are trying to 

minimise): 

  
 

 
  

And therefore we get x: 

Figure 17 
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Now I will use the Lagrange method, so using the two main equations stated previously we have: 

  (   )

  
  

  (   )

  
   

  (   )

  
  

  (   )

  
   

Substituting for the functions: 

  (   )

  
     

  (   )

  
    

  (   )

  
   

  (   )

  
   

Therefore: 

       

         

Solving for  : 

    
 

 
 

     

Now we substitute   into the constraint equation: 

 
 

 
        

This gives a value of   as -0.4, which we can substitute back to get the values of x and y: 

  
 

 
 

  
 

 
 

Which we see are the same as we got from the method of substitution. 
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We can generalise this method for several variables: 

If the function we want to minimise is of the form: 

 (      ) 

And if we have a set of constraints (they have to be less than the number of variables): 

 (        ) 

We can introduce a Lagrange multiplier for each of the variables: 

   

Now we form the equations of the form: 

  (      )

   
   

  (      )

   
   

For each of the variables. 

Now we follow the same procedure as before and substitute the multipliers to satisfy all of the 

constraints and use that to work out the values of the variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 



[STATISTICAL MECHANICS] February 24, 2013 

 

 

 

2

 1
 

Sterling’s approximation 

Sterling’s approximation is used to give an approximate equation that is generally easier to deal with 

for the factorial function. The factorial function is defined as: 

              

Now we take the logarithm of both sides: 

                           

It can be seen why this is useful, as the equation shows the right hand side is additive as supposed to 

multiplicative. A graph can be drawn to give a better representation of the process: 

 

 

 

 

 

 

 

 

 

The figure shows that in this method we are essentially integrating under the curve as an 

approximation for the factorial function: 

      ∑    

 

   

 

Taking the limit of infinite number of terms in the sum we get: 

∑   

 

   

  ∫       
 

 

 

Integrating the right hand side we get: 

∫       
 

 

        

This gives Sterling’s approximation: 

          

N 

ln
N

 

Figure 18 
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This can also be rewritten by taking exponentials as: 
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Number of ways to get a particular state 

Consider a number of boxes: 

 

 

Each box can be in a given state (let’s not worry about what the state is or represents, in general it 

could be energy or momentum etc.) 

If we have a set of discrete states, say N of them, and we call each individual state n1, n2, n3,.. etc. 

then we can quantify the number of boxes in any given state.  

∑    

 

   

 

We can get the number of ways there are of getting a given set of boxes in a given number of states 

very simply by the following equation: 

                             
  

            
 

 

It can also be written as: 

  
  

∏     
 

Where # is the number of possible configurations, I will just use the symbol to represent it from now 

on. 

Think of # as a function of ni, as ni becomes very large we get something like: 

 

 

 

 

 

 

 

 

Figure 19 

# 

ni 

Figure 20 
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We see the peak is very narrow which means the uncertainty in ni is small and we can be sure about 

the value of ni being what it is. For large N these ni’s can become very definitive and we can define 

the probability as being: 

 ( )  
  
 

 

This makes sense as the value of p(i) is dimensionless and represents the ratio of a value with the 

total value.  

Now we can write down two constraints that follow from the definition of a probability: 

∑
  
 

 

   

This simply follows from the fact that the probabilities always add up to one. The second constraint 

is a little harder to see. We know that the total energy is: 

    ∑    
 

 

Suppose we also know the average energy, then we can also express the total energy as: 

          

Equating these two we have: 

∑    
 

       

If we now divide both sides by the total number of particles we have: 

∑
    
 

 

 
 

 
    

However we know that the probability is simply ni/N, therefore: 

∑ ( )  
 

     

This is our second constraint and is also intuitively pleasing as it is what we have come to expect for 

any quantity. It might be easier to think of it as the representation of the number of boxes in a given 

state. As more and more boxes end up being in one state, it is more likely to find a box in that state. 

Now we can find the maximum # as a function of the ni’s, subject to the two new constraints, this is 

the mathematical problem we have to solve.  

When # is maximum the log of # will also be maximum, it turns out that it is easier to find the log. 

From the definition of # we can take the log of both sides of the equation to get: 

            ∑       
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This can be rearranged to get it into a more convenient form. First we use sterling’s approximation: 

             

Therefore: 

             ((∑       )     ) 

Substitute ni = NP(i): 

              ∑  ( )    ( ( ) )    

This can be rearranged as: 

       ∑ ( )     ( ) 

Notice that: 

∑ ( )     ( )            

Therefore we obtain another important and intuitively pleasing result. The entropy we know is 

related to the probability of states and therefore also gives a measure of the different possible 

configurations which is kind off observable from the result we obtain. 
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Partition function and its relations 

Coming back to the problem, we want to maximise log #, subject to the constraints. We do this using 

the method of Lagrange multipliers (LM) that we used before.  

We add a LM for each of the constraints and then once we have a solution in terms of them we can 

substitute them back into the constraints to find the value of the multipliers. 

Log # is a function of P(i) and N and we want to maximise it w.r.t to the probability (find the state 

with the maximum probability). So we form the equation of LM: 

        ∑ ( )

 

  ∑   ( )

 

 

  and   are the LM. Now we substitute for log #: 

 ∑ ( )    ( )

 

  ∑ ( )

 

  ∑   ( )

 

   

We are trying to maximise therefore N can be ignored for log #.  

Differentiate w.r.t P (j), where j is some specific number: 

    ( )            

 ( )    (   )      

We see here that the first term is just constant; the second term is the important term. For now we 

will define the LM   to be: 

  
 

   
 

This will be proven later.  

Now we define: 

  (   )  
 

 
 

Now we can apply the constraints to find the LM: 

∑
 

 
 

        

Which gives us the relation: 

   ∑     

 

 

We call this the partition function, applying the second constraint: 
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∑   ( )

 

      

We can now substitute for the probability to see what we can do: 

 

 
∑   

    

 

      

After some thought we can see that the equation above can be rewritten as: 

 
 

 
∑

 

  
     

 

      

We can take the differential outside the sum and we see that we obtain a very useful relation: 

 
 

 

 

  
       

Which we can write more concisely as: 

 
     

  
      

We can now use the fact that   is 1/T to get: 

          

This function A must have units of energy (of some sort), we will see that it is infact the Helmholtz 

free energy.  

Now we have three function which will turn out to be very useful, Entropy, Energy and Helmholtz 

function. Consider, first, the entropy: 

    ∑ ( )    ( ) 

Substituting for P(i): 

   (∑
 

 
     ) (

 

         )  

We can now substitute for the Energy and the Helmholtz function to obtain: 

   (   ) 

Or in terms of T we have: 

       

Or in terms of the partition function: 
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Statistical Fluctuations 

Consider a quantity X which is a function i, that is for each state in a system X has a unique value, 

X(i). We want to see how X fluctuates (varies), this can be defined as: 

 (     )                

 

 

 

 

 

 

This graphs shows the mathematical representation of the variation of our designated variable X(i). 

The equation of variance can be expanded to give the more familiar form: 

              

Variance is defined as the square in the uncertainty: 

      

Variance in energy 

We can now attempt to find the uncertainty in the energy of a given system. We know that: 

       
     

  
 

Therefore we can simply square this to get the second term of the variance, the mean value 

squared. However now we need to calculate the mean of the square for the first term and this is 

done by: 

       ∑ ( )  
  

Substituting for P(i): 

      
 

 
∑       

  

After some thought we can see that this equation can also be written as: 

      
 

 

   

   
 

Substituting these ingredients into the equation of the variance we obtain: 

Δ𝑥 

Figure 21 
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 (
 

 

  

  
)
 

 

Which can be written in a concise form as: 

  
      

     
 

We see that this is simply the differential of E energy w.r.t    

    
  

  
 

This can be rewritten in terms of temperature by relating   with temperature: 

   
  

  
   

Notice the change from partial differentials to ordinary differentials; this is because we happen to 

know that energy is only a function of temperature. We can see that the differential term is simply 

the heat capacity, hence we are left with a simple relation: 

      

I will now remind you that there is a factor of Boltzmann constant missing, as we have been working 

in units where it is equal to one. With the Boltzmann constant we are left with the equation: 

      
  

Conclusions can be drawn from these results now. We know that C is proportional to the size of the 

system, in general the size could mean the mass or dimensions but in this case we will simply mean 

the number of particles in the system N (indeed when you think about it, that’s all the size actually 

means, higher mass comes from more particles as long as the substance has the same particles and 

larger volume also results in more number of particles as long as the particles are identical). 

    

The energy itself is also proportional to the number of particles in the system (more degrees of 

freedom).  

    

If we rearrange the variance for the uncertainty in energy: 

      

Therefore: 

   √    

And therefore: 
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     √  

Therefore we arrive at a very important result; we see that since the change in energy is only 

proportional to the square root of the number of particles in the system the value of the uncertainty 

compared to the value of the energy will be small in a system containing a large number of 

molecules. 
  

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Δ𝐸 

E 

Figure 22 
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Pressure 

We start by discussing the concept of pressure by considering a piston in a container.  

 

 

 

 

The small dots in the container are the gas molecules, the red block at the end represents the piston. 

The pressure on the piston is given by the usual formula of pressure: 

         
     

    
 

Firstly we need to calculate the force on the piston wall. In this discussion we assume the force is 

only caused by the molecules of gas, however this is not the most general case, as the force can be 

caused by long range potentials such as gravity or electromagnetism (here we assume there are not 

external forces).  Force is defined in differential form as: 

    
  

  
 

Where U is the potential energy.  

We can use this for the force on the piston, by taking the energy of the system being the work done 

by the system on the gas, which can be seen equally as the work done by the gas on the piston. It is 

important that the motion of the piston is slow, to see why this has to be the condition, we can 

consider the piston moving away in the container at a very high speed. There will be a certain point 

when the velocity of the piston is as fast as the velocity of the molecules and in this case there will 

just be no collisions between the particles at the piston and hence no pressure! 

Admitting this is an extreme example, however this shows the limitations of the process. This 

condition is called the adiabatic condition. By substituting force into the equation for pressure we 

get the following equation: 

 
  

  
   

The negative energy comes by the increasing in energy as the piston is used to compress the gas in 

the container.  Another way to think about why the adiabatic condition is needed is by remembering 

that the whole concept of pressure is an average concept in the case of a gas. The collisions and 

force are averaged over time and the number of particles, therefore we need time and hence the 

slower the piston the moving, the more time we have and hence the more accurate the result is. 

Adiabatic Process 

Figure 23 
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It is a process done slowly and has constant entropy (it comes from quantum mechanics). It can be 

expressed by considering a system with the discrete energy levels: 

 

 

 

 

 

 

The energy values of the states change as the volume is changed, the energy levels will be closer 

together if the volume of the container is small and decrease with increasing volume. 

 

 

 

 

 

 

 

The lines represent how the energy level values change with volume, however they do not appear or 

disappear or cross each other and hence have the same order aswell. Suppose we start of the 

system in a given state as we vary the control variable (in this case volume, in general it is a variable 

that we can control, the system remains in the same state even though the state itself varies in the 

value it has. 

Now we suppose that the system starts off in one of three states with a probability of 0.5, 0.25, and 

0.25. After a given amount of time the states will change in values, however the probability will still 

be the same (as we have not gained any more information) and hence the entropy, which is given 

by: 

    ∑ ( )    ( ( )) 

Is also the same, it is conserved. 

This is expected due to the conservation of information (look back at Liouville’s theorem discussed 

previously). 

V 

E 

Figure 24 

V 

E 

Figure 25 
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Now we can use the fact that the entropy is conserved to get the pressure in an adiabatic process. 

By considering the central equation: 

           

At constant entropy we have: 

  (
  

  
)
 
 

In general we can have the energy in terms of any control parameter, X, for a given variable, Y. So in 

general we have: 

  (
  

  
)
 

 

We have Y = P and X = V, these pairs of variables are called conjugate thermodynamic variables. 

In general entropy is an extremely tough parameter to manipulate; therefore we need a different 

relation. 

 

 

 

 

 

 

 

Consider a system with lines given above; if we want to obtain a change in energy we follow the line 

of constant energy. We split this process up into two stages: 

First we go long horizontally at constant T  

Then vertically at fixed V (entropy has changed) 

This can be mathematically described as: 

(
  

  
)
 
 (

  

  
)
 
  (

  

  
)
 

 

Now we note that the second term on the right hand side has with it a corresponding entropy 

change and by considering the lines of constant entropy (more specifically how to get from one red 

line to the next) we have: 

(
  

  
)
 
   (

  

  
)
 
(
  

  
)
 

 

Lines of constant energy 

V 

Figure 26      

T Lines of constant entropy 
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Substituting back into the original equation we have: 

(
  

  
)
 
 (

  

  
)
 
 (
  

  
)
 
(
  

  
)
 

 

However we know from the central equation that: 

(
  

  
)
 
     

Hence we arrive at the result: 

(
  

  
)
 
 (

  

  
)
 
  (

  

  
)
 

 

Now, since we are differentiating the left side w.r.t volume at constant temperature we can rewrite 

the equation above as: 

(
  

  
)
 
 (

 (    )

  
)
 

 

Which simplifies to: 

(
  

  
)
 
 (

  

  
)
 

 

And using the relation for pressure stated in the beginning we have our final result: 

   (
  

  
)
 
   (

 (    )

  
)
 

 

This is a lot easier to deal with compared to the previous relation we had in terms of entropy. 

Ideal gas 

First of all, we should consider exactly what assumptions we are making in the description of an ideal 

gas. We assume that all the gas molecules are point like and the volume they occupy is negligible. 

Another important assumption is that all the particles are identical and they have no interactions 

between them. 

We want to calculate the partition first, once we have that we can calculate all the thermodynamical 

properties of this system, like the pressure as we can see from the equation we just derived. 

The partition function is given by: 

   ∑     

 

 

This is the sum of the states of the system. If we have N particles, they will show three states of 

momenta and three states of position each. In general we are dealing with classical systems and 

therefore the sum turns into an integral as they states become continuous: 
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  ∫             (
∑
  

 

  
)    

The notation used here is that the superscripts on the differentials show the 3 directions that we 

have to integrate over and the energy in the exponential term is simple the kinetic energy as we 

have already stated the system is not under any external forces. 

Since the particles are identical if we swap two particles the system is left in an unchanged state 

overall. So if we have three particles they can be changed around in 6 different ways to leave the 

overall system unchanged and hence we need to compensate for this factor while finding the 

partition function. This is done simply  by dividing by a factor of N factorial, so our partition function 

becomes: 

  
 

  
∫             (

∑
  

 

  
)    

There is no dependence on position in the integral therefore integrating over dx simply gives the 

volume element for a particle, therefore we can rewrite our integral as: 

  
  

  
∫          (

∑
  

 

  
)    

The N is the exponent of the volume is there for the number of particles in the system. For one 

particle we just have: 

    
  

  
∫       

   

  
  

This is a Gaussian integral and has a solution: 

  (√
   

 
)

  

(
  

  
) 

We want the logarithm, therefore we use sterling’s approximation to obtain: 

                   
  

 
     

  

 
        

The energy of the system is defined as: 

    
     

  
 
 

 
   

Which gives the energy per particle as: 

  
 

 
  

Remember that we are working in units in which the Boltzmann constant is set as one, that is why it 

is missing from the equation above, we can put it back in: 



[STATISTICAL MECHANICS] February 24, 2013 

 

 

 

3

 6
 

  
 

 
    

Here we see the foundations of the equipartition theorem, as the factor of a half comes from the 

Gaussian integral and the 3 comes from the 3 direction we account for. So for any given direction of 

motion the energy is simply ½ kT which is what the equipartition theorem says (note that I say 

direction however it could be any degree of freedom) 

Pressure for ideal gas 

Now that we have the partition function we can calculate the pressure for an ideal gas by simply 

differentiating using the result obtained previously: 

    (
 (    )

  
)
 

 

Substituting the partition function we get: 

  
  

 
 

Once again remember there is a Boltzmann constant, and we see that this exactly the same as the 

ideal gas law that we know.  

We can now also calculate the entropy which is defined as: 

  
   

 
 

Substituting for E and A: 

          
     

  
 

For an ideal gas this becomes: 

        
 

 
      

 

 
  

This is much more complex than the Helmholtz function, therefore we have justified not using  the 

entropy in the very beginning. 

An interesting fact can be seen by considering the same container with an ideal gas filled inside it. If 

we place a light movable piston in the middle of the container (assume there is no friction), then at 

equilibrium the piston won’t move. This means that the force it feels from both sides must be the 

same and hence so must the pressure. 

 

 

 

Figure 27 
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Using our definition of the pressure we have: 

(
   
   

)
 

   (
   
   

)
 

  

Where VL is the volume on the left and VR is the volume on the right. For an ideal gas at equilibrium 

they are both the same, so we can rewrite this equation as: 

(
 (     )

  
)
 
    

Hence we see that in equilibrium state, the Helmholtz free energy is minimised, that is at first glance 

a surprising result as we would (or at least I would) expect the overall energy to be minimised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[STATISTICAL MECHANICS] February 24, 2013 

 

 

 

3

 8
 

Modified Ideal gas 

We know take away the assumption that the particles of the gas are point like, instead they have 

some internal structure and it is this internal structure that shall be the studied in this section. 

The effect of this assumption is still maintained, that is we assume that there are no collisions or 

interactions between the gas molecules (this just means that the density of the gas is very low, 

which is a fairly good assumption).  

Suppose now that we have a molecule made of two atoms and they are connected by a rigid rod 

(this represents the chemical bond between them): 

 

 

Now for simplicity we shall consider the molecule as being able to rotate in only one plane (this 

would have no effect on the physics, as more directions to rotate in can be modelled in the same 

way and lead to the same effects). The molecule now gas an additional energy of rotation along with 

its translational kinetic energy, this energy can be excited by collisions and external effects.  

To make the calculations easier to follow, we can consider that one atom in the molecule weighs a 

lot more that the other and hence the heavier one does not rotate much (just like the solar system).  

Now if we model the energetics of the system, we have three translational energy components (the 

motion of the centre of mass of the molecule) of the form: 

   
  

   
 

Where the M represents the total mass 

The rotational energy can be found easily by considering one atom rotating about the other: 

 

 

 

 

 

 

 

Where r is the radius of rotation and simply the length of the rod we used to represent the bond 

between the atoms. v is the tangential velocity of the lighter atom moving around the heavier atom.  

  

Figure 28 

Figure 29 

𝑟 

𝜃 
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The rotational energy is then simply: 

   
 

 
    

However since we are assuming the motion is circular we know that: 

   ̇  

Substituting this into the previous equation we get: 

    
 

 
  ̇    

From classical mechanics we know: 

                        

Therefore we arrive at our final result: 

   
 

 
   ̇ 

The angular momentum is defined as: 

    ̇ 

Therefore we can rewrite the equation for energy as: 

   
  

  
 

Now we can write down the total Hamiltonian of the molecule: 

  
  

  
 
  

  
 

Now looking at this from the point of view of statistical mechanics, we see that the overall energy 

will be a sum of two independent terms, and hence the partition function will be factorable: 

     ∫ 
 
   

         ∫  
   

         

We have done these integrals before and they are the Gaussian integrals, which have the solution of 

the form: 

     (√
   

 
)

 

  √
   

 
 

Notice that is no power of three on the last term, this is because we have restricted the rotational 

motion to a single plane, in general it could be in many planes and as long as they are independent 

we can add to the power of that term. 
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This partition can be extended to N particles simply (as we showed before): 

  
 

  
(  (√

   

 
)

 

  √
   

 
)

 

 

However we are generally interested in the log of the partition function: 

                    
  

 
     

 

 
                

Recall the energy as: 

    
     

  
 

  
  

 
  

 

 
  

This is of course the result of the equipartition function that we studied in the first year. 

This is where the problem arises in the classical picture. Consider taking the radius, so the length of 

the rod connecting the two atoms becoming infinitesimally small, then we should be unable to 

distinguish between the molecules being point like or not. This would mean that the term adding to 

the internal energy, which comes from the rotational motion should disappear. However this is not 

observed (at least at high enough temperatures), and we can extend this argument further if we are 

making r very small, we would have the degrees of freedom of the individual electrons of the atoms 

(which there could be many!) and the degrees of freedom of the nucleus itself which we know is not 

point like. 

So this leads to a major paradox in classical physics as this would mean there are many many 

degrees of freedom and hence the energy should become vast! (This paradox is closely related to 

the Ultraviolet catastrophe in black body radiation).  

The solution to this problem comes from quantum mechanics. We do not even need to get into the 

deep theoretical differences to do this; we simply need to assume the fact that the angular 

momentum is conserved: 

      

If we substitute this relation into the rotational energy: 

   
    

  
 

The partition function for a single particle now becomes: 

     ∑  
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This sum is too hard to complete analytically, therefore we have to make some approximations for 

very high temperatures and very low temperatures. 

High Temperatures (low  ) 

At high temperatures the function will be very changing very slowly and therefore we can 

approximate the sum to an integral. The function plotted might look something like this: 

 

 

 

 

 

 

If we replace the sum with an integral we simply get back to the classical regime that we were using 

earlier and get the exact same integral as we did before, except now we are integrating over n as 

supposed to L, however it makes no difference as they are proportional to each other, and we get 

the classical answer of 2NT for N particles. 

Low temperature 

At low temperatures we have a very rapidly varying function therefore we can’t take the integral of 

the sum as it would not be accurate. However we know that since it is rapidly varying we can expand 

it and just take the first few terms and they should represent the function to a good approximation. 

The curve looks something like this: 

 

 

 

 

 

 

 

 

 

Therefore if we take the first two terms of the sum: 

𝑒 
𝛽𝑛   

 𝐼  

𝑛 
Figure 30 

𝑒 
𝛽𝑛   

 𝐼  

𝑛 
Figure 31 
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     ∑  
     

  

 

 

We get: 

          

          
 
  
   

Therefore we get the approximate single particle partition function as: 

        
 
   

   

This can be extended to N particles as: 

   (    
 
   

  )

 

 

We note that if the temperature is small and is I is small the second term becomes negligibly small. 

Again we are interested in the log of it: 

         
 
   

   

Therefore the energy is: 

    
   

 
  

   

   

This does not like the classical formula that we got for the energy; however this is the solution to the 

molecular structure of the degrees of freedom.  

So now the question can be asked about where does the crossover between the classical limit and 

the quantum behaviour take place. The answer is straight forward, it is when the rotational energy 

approaches the thermal energy from the equipartition theorem: 
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Black hole thermodynamics 

This is a very interesting application I thought of statistical mechanics and thermodynamics and we 

do not need to know much about the black hole itself to do this.  

All we need to know is that it is an object with mass; let’s say M, and a radius, say R, which 

represents the Schwarzschild radius (we learnt this in the first year). Consider the black hole having 

just one control parameter which is energy and that it depends on M and R.  

We know that R is: 

  
   

  
 

Where G is Newton’s gravitational constant and c is the speed of light. 

Now say we wanted to add 1 bit of entropy into the black hole, to do this we could throw into it a 

particle and this would also increase the size of the black hole. 

We want to know how the radius changes as we add the bits of entropy. Say we throw in photons 

one by one into a big black hole. We create a photon with precise energy and wavelength to give it 

one bit of information, however as we threw it into the black hole it will fall at some specific position 

and this position will be marked by a set of coordinates therefore it would not have just 1 bit of 

entropy (note I continually change between entropy and information, for this discussion they mean 

the same thing).  

Now we have to assume some facts about the black hole that I will not prove here. Black holes can 

either absorb or reflect photons (or any other particle) depending on the energy of the photon. The 

energy of course corresponds to a certain wavelength. It turns out that photons with wavelengths 

that are shorter than the radius of the black hole are absorbed and the others are reflected. So our 

photon must have a wavelength less than the radius, however we stated above that this would 

mean a necessary increase in the entropy. The way to get around it is to simply throw in a photon 

that has wavelength equal to the radius of the black hole, therefore it has half and half probability of 

being absorbed or being reflected and therefore the only thing we know is that either its absorbed 

or reflected and hence corresponding to one bit of entropy. 

This can be simply understood by the elementary equations of quantum mechanics, the change in 

wavelength corresponds to a change in momentum: 

  
 

 
 

And a change in momentum can be used in the Heisenberg uncertainty relation for position and 

moment: 

   
 

  
 

The increase in energy is just: 
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The equation for R has a mass in it and we know that mass is equivalent to energy therefore we can 

use those relations to see that the change in R is: 

   
   

   
 

If we move the R from the denominator on to the other side we get a change in area: 

   
   

  
 

This change in area corresponds to change in entropy of one bit. So in general for a change in 

entropy we have: 

   
   

  
  

This shows that the entropy will become very large for a black hole and that is intuitively pleasing as 

the black hole can “hide” a lot of information within it. The quantum mechanical effect on entropy 

can be seen by the   in the denominator for entropy and this infact limits the entropy instead of 

making it infinite as in classical physics as there is no    

Now we can look at the temperature of the black hole. We know that: 

        

  
  

  
 

If dS is just once, corresponding to change in entropy of one bit than the temperature is just the 

change in the energy. We know the change in energy is simply: 

   
  

 
   

We can substitute back for R to obtain: 

  
   

  
 

As we stated above M is the same as energy and therefore we have a peculiar result that the 

temperature is inversely proportional to energy! This is not something we observe very often in 

nature, except in stars. Decreasing the energy of stars increases there temperature as the gases will 

start to collapse due to the gravitational pull. 

This also means that these objects carry a negative heat capacity! And are very unstable. To see why 

consider a black hole in thermal equilibrium with its environment. The net transfer of energy is zero 

however if there is even the slightest of fluctuations in energy, say by taking in a lit bit more energy, 

the temperature of the black hole would then decrease. As this happens the heat from outside will 

flow in and more energy will lower the temperature even more and this will lead to a run-away 
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effect until the black hole reaches absolute zero! We know this does not happen, so we have a 

paradox here that the black hole can never be in thermal equilibrium with its environment. 

The temperature that we see here is the temperature observed by someone very far away from the 

black hole. This is not however the temperature of the black hole itself. That is because the photons 

have to travel from the black hole (of course they can’t come from inside the black hole, strictly 

speaking they come from the surface of it) and as they do so they lose energy in escaping the 

gravitational pull of the black hole. 

We can use this temperature to calculate the luminosity of the black hole by using the Stefan-

Boltzmann law: 

      

We also know that for a black hole: 

     

  
 

 
 
 

 
 

Hence the luminosity is: 

  
 

  
 

Therefore we see that a big black hole has a small luminosity, and hence radiates slower. This is just 

the hawking radiation! 
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Second Law of Thermodynamics 

In this section I will discuss what the second law is and mainly explain the foundations for where it 

comes from as it seems to contradict the principles of classical physics at first sight.  

In words, the second law of thermodynamics states that any system evolving over time will go from 

a state of more order to a state of less order. However the fundamentals of classical physics are 

Newton’s laws of motion and according to those the trajectories taken by particles is exact and 

reversible, but the second law clearly states they are never reversed, so there is a contradiction.  

Box of gas 

We start of by considering Newton’s laws for a gas in a box and seeing where they lead us. Consider 

a box in which at time zero we put a bunch of particles in the corner of the box: 

  

 

 

 

 

Now the gas particles and the box are taken to be one system. If we let this system evolve over time, 

the gas will expand and after a given amount of time it will fill the box almost homogenously: 

 

 

 

 

 

According to Newton’s laws of motion the trajectory taken by each of these particles can be known 

and the gas particles can be taken back, so that the system will be in the initial state again. Hence 

the box would violate the second law of thermodynamics. Of course this does not happen as the 

reversing process never happens (in though it is theoretically possible) and the reason for this 

behaviour lies fundamentally in the idea behind chaos.  

To understand this fundamentally we need to understand how systems evolve with time in phase 

space. As we have already discussed many times in the early chapters, phase space is in general 

multi-dimensional, we just use two to simplify things.  

If we start with a lump in phase space: 

 

Gas particles  

Figure 32 

Gas particles  

Figure 33 
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As this lump evolves in time, it forms different shapes and from Liouville’s theorem we know that 

the volume of these lumps always the same, it is worth remembering that the lump we are using 

know is just a probability distribution. 

For simplicity we can say that the probability distribution is 0 outside the boundary of the lump and 

constant inside it. Now we can apply the equation of entropy to this, as the volume of the lump is 

the probability distribution we have: 

       

Where    represents the volume of a lump in phase space. However as this is constant the entropy 

of the system should be constant and again is contradicting the second law of thermodynamics! The 

reason again is the classical nature of Liouville’s theorem.  

Chaos 

Consider an idealised snooker table with no holes: 

  

 

 

 

 

 

Now imagine hitting the white ball with a specific velocity at a specific angle. According to classical 

physics the system should be deterministic if we know exactly what the initial conditions are. 

However if there is even the slightest mistake in the angle or velocity the results could be entirely 

different. Consider the figure below: 

  

 

 

𝑝 

𝑥 
Figure 34 

Figure 35 
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The yellow line shows the trajectory of the balls when the velocity and angle are known exactly and 

the black line shows the trajectories when the angle is slightly different. The results of this small 

change can be extremely different over time.  

Most systems are complex and chaotic like the snooker table, where the slightest change in initial 

conditions lead to drastically different results. To look at this in a phase space diagram, we would 

have something like this: 

 

 

 

 

 

 

The two lines show trajectories of two systems starting of initially very close together in phase 

space. If we let the small difference between the trajectories be Ð, then the difference in the states 

of the system after some time can be modelled (for a chaotic system) as: 

 ̂       

Where   is called the Lyapunov constant and represents the degree of instability of a system. For this 

small change in the initial conditions what generally happens to a system is that it forms a very 

fractalated structure in phase space: 

 

 

 

 

 

Figure 38 shows the system at initial conditions and figure 39 shows the system after some time has 

passed. 

Figure 36 

𝑝 

𝑥 
Figure 37 

𝑝 

𝑥 
Figure 38 

𝑝 

𝑥 
Figure 39 
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An interesting point is that the Planck’s constant has units of area in phase space, so as the systems 

become more fractalated there comes a point when it cannot be further fractalated as the lengths of 

the fractals become of the order of Planck’s length. 

To see why this fractalated structure for chaotic systems leads to the second law of thermodynamics 

we have to realise that we can never know exactly the initial conditions. This comes from limitations 

in measurements as well as the natural limit’s from quantum mechanics (in essence quantum 

mechanics causes chaos, no matter how accurately the measurements are made). 

This uncertainty in measurements can be represented by small blobs or boxes in phase space instead 

of having points: 

 

 

 

 

 

 

The small orange blobs are the measure of uncertainty in the initial conditions. I haven’t drawn all of 

the blobs but you can imagine the entire volume being full of these blobs. The blobs inside the phase 

space will slightly increase the volume of the overall phase space, as the blobs on the edge of the 

volume will extend slightly (as they are no longer considered point like).  

This is called coarse grained phase space. After some time we get the fractalated structure like in 

figure 39, except since it is coarse grained and the fractals become very close and dense, the overall 

structure of the fractals just becomes one big volume: 

 

 

 

 

 

Therefore if we use our definition for entropy like we did previously, we see that it always increases 

as the volume always increases. 

This coarse grained structure also explains why the system cannot be traced back in its trajectory to 

its original state. The small blobs lead to even more fractalated structure as time increases, we can 

think of a blob itself being made of many tiny points and that only one of those points actually to the 

“real” value of the state (strictly speaking these can’t be point like, instead have to be small boxes of 

units  ).  

𝑝 

𝑥 
Figure 40 

𝑝 

𝑥 
Figure 41 
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So we have a very large number of points each leading to fractalated structures and therefore if we 

trace any point of the fractalated structure it will almost never lead back to the initial state. There 

will be in general a minuscule number of points that were actually representing the original state of 

the system. The rest of the points if traced “back” will lead to completely different states as they 

were never part of the original state and tracing back is just evolving in time. Hence they will actually 

just go on creating more fractalated structures and making the volume of the states even more 

complex. 

Another important point is that the energy which the initial volume carries will always remain 

constant. In phase space it is like having a plane of constant energy in which systems evolve 

(remember such a system must be a closed system, that is, it is not under influence from any 

external forces. 

Chaos also leads to a loss of information (as any weather forecaster will know and we also don’t 

know exactly what the Hamiltonian is. In statistical mechanics and thermodynamics the entropy 

always takes on this coarse grained structure. 

Harmonic oscillator 

In the previous section we discussed a diatomic molecule connected by a rigid rod, we shall now 

replace that rod with a spring connecting the particle. This time we shall ignore the rotational 

degrees of freedom for simplicity and consider the potential energy stored in the spring. Just as we 

did for the modified ideal gas we compute the Hamiltonian: 

  
  

  
 
   

 
 

k is the spring constant, when it is large the spring is stiff and the particle becomes point like. 

Therefore for low temperatures the internal motion should be frozen out.  

We can model the internal vibrations we calculating the partition function for it: 

    ∫ 
 
   

    
    

        

Therefore: 

     √
   

 
√
  

  
 
  

  
 

Where 

  √
 

 
 

Taking the log we have: 

          (
  

 
)       
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Now we can calculate the energy: 

   
     

  
 
 

 
   

Remember 

      

So the harmonic oscillator always stays the same, so it never gets to being a point particle as we 

expect from classical physics as this term has no dependence on k.  

Quantum harmonic oscillator 

As was the case with the modified ideal gas, the solution to this problem comes from quantum 

mechanics and the quantisation of energy as: 

      

Partition function for the quantum mechanical harmonic oscillator becomes: 

     ∑      

 

 

This sum is infact a geometric series that converges to the solution: 

     
 

       
 

Therefore for the energy we have: 

  
  

      
 

The exponential can be expanded out to give approximate qualitative results: 

  
  

        
   

Which is the same as the classical limit, so is intuitively pleasing. And we see that when the 

temperature is very small,   is very large the energy tends to zero very rapidly due to the 

exponential factor and hence the problem of the classical harmonic oscillator is no longer there. 

In the argument above we simply outlined the equations that lead to the quantum mechanical 

solutions. Another way to look at this would be to look at the phase space of the harmonic oscillator 

system. As we have seen previously, for quantum mechanical behaviour the concept of points in 

phase space does not exist due to the uncertainty principle. Therefore we have small boxes of area   

as this has units of area in phase space.  

However in general this does not have to be a box in phase space, it could be any weird shape as 

long as the area is  , so it could be something like: 

 
𝑝 

𝑥 
Figure 42 
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Where all three shapes correspond to the area of  and as can be seen the shape on the very right 

side will have    x  p a lot greater than   compared to the other two. And this clearly satisfies 

Heisenberg’s uncertainty principle.     

Now we can write down the Hamiltonian of the system, same as before: 

  
  

  
 
   

 
 

This has a circular shape in phase space, where the area of the circle is  . 

 

 

 

 

 

 

Now classically if we have an increase we would simply get a larger circular which could be of 

arbitrarily small or large area. However in quantum mechanics we know the energy is quantized as 

we stated before. Therefore the higher energy states form concentric rings around the circle in the 

ground state (let’s assume the circle in the graph above is in the ground state) with the area 

between the rings always equalling  .  

 

 

 

 

 

 

 

So we can immediately tell that the area between the rings must increasingly get smaller for large n 

(this just represents that the energy levels become closer and closer in the traditional energy 

diagrams). 

For an nth state, the area of the entire disc (not the rings!) is simply   . We also know that the area 

of a circle is  

𝑝 

𝑥 

Figure 43 

𝑝 

𝑥 

Figure 43 

𝑛    

𝑛    
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Therefore equating this to the quantum mechanical area gives: 

       

Therefore the radius is: 

  √
  

 
 

However know we see that from the geometry of the phase space: 

  √
  

  
     

Therefore we once again obtain the energy being quantised as n  by equating the equations written 

above.  

In thermal equilibrium these rings have a probability distribution attached to them, which is just the 

Boltzmann distribution. 
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Black body radiation 

There was a big puzzle attached to the black body radiation at the start of the 20th century. To 

outline the problem, consider a cavity full of radiation within it and it has completely reflective walls. 

The radiation can exist in different wavelengths; classically there are an infinite number of 

wavelengths (as the wavelengths can just be divided up in smaller and smaller intervals). The 

radiation can also be thought of as a collection of harmonic oscillators. In the same sense, that a 

vibrating violin string can be thought of consisting many harmonic oscillators (by that I mean the 

vibrations can have different wavelengths).  

Now if we consider the system in thermal equilibrium, each harmonic oscillator should have energy 

kT according to classical thermodynamics (equipartition theorem). However there are an infinite 

number of possible oscillation modes (infinite number of possible wavelengths, each corresponding 

to an energy of kT). Therefore in thermal equilibrium the system should have an infinite amount of 

energy!  Of course this was not true, infact experiments showed that there was a minimum 

wavelength of the system in which the radiation could be, and the results also showed that this 

wavelength depended on temperature.  

Well it was relatively easy to accept that there was a smallest wavelength limit in nature, however 

the fact that this energy depended on temperature required explaining. However we can now just 

look back at our discussion on the quantum mechanical harmonic oscillator in which we just saw 

that the energy is quantised in discrete wavelengths (frequencies, but it’s the same thing!). 

Before any concrete theory of quantum mechanics was developed, Planck postulated this relation as 

an explanation to this problem, however he had no strong foundation to support why this would be 

the case, he simply got the equations right!    

These quanta’s of radiation that Planck postulated are what we know call photons. Einstein was the 

one who came up with a complete theory of this in 1905 with the explanation of the photo-electric 

effect and he knew very well that he has infact showing a particle like behaviour of the light. 

We want to calculate the total amount of radiation in the box, so we need a clear description of the 

radiating oscillators. If we take the box to be completely reflecting, then we have boundary 

conditions that the oscillations at the walls are zero (analogous to a guitar string). 

 

 

 

 

 

 

The motion of the string can be modelled by solving the wave equation as we have done many 

times, therefore I will simply quote the result: 

Figure 44: Vibrating motion of a string 

𝑦 

𝑥 
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 (   )   ∑  ( )    
   

 
 

 

Where L is the length of the walls (or any other thing that is used as a boundary) and m is any integer 

value. 

This is for a 1 dimensional wave; this can simply be extended to 3 dimensions as: 

   ∑          ( )    
    

 
   
    

 
   
    

 
 

        

 

This completely describes the motion for one harmonic oscillator. The frequency is just:  

   | |  

Where: 

| |   √  
    

    
  

Now we can find the total energy of the harmonic oscillator (HO) by summing up these waves. 

Classically we saw that the energy became infinite, as the energy in every HO was the same (1/2 kt). 

We saw in the section for QHO, the energy was given by: 

  
  

      
 

Substituting for   gives: 

  
| |  

  | |    
 

Therefore the total energy is: 

   ∑
| |  

  | |    
        

  

This is a difficult sum to deal with as it is, therefore we have to think of a different way to go finding 

the energy. We know that: 

  
  

 
 

If L is large compared to the wavelength then the distance between neighbouring values of m is 

small. Therefore if we sum over k instead of m, then we can approximate the sum for an integral: 

∑
| |  

  | |    
        

 
 

   
∫

| |  

 | |     
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This integral is done by substitution and using a standard integral, therefore I will simply quote the 

result here: 

  
    

      
 

This is the Stefan-Boltzmann law (we are just a missing a 2, since the photon can be polarized in two 

orthogonal directions), once again the conversion from the quantum to the classical regime occurs 

when: 

       

Radiation pressure 

The pressure is given by: 

  

   
    

A is as usual the Helmholtz function: 

          

Therefore pressure is: 

 
 
 

 
 

Number of photons and entropy 

The number of photons in a given oscillation mode: 

 

      
 

Therefore the total number of photons is simply the sum over all oscillation modes: 

∫
 

      
      

This integral is a convergent integral   

The entropy on the other hand is: 

  
   

 
 

We know that E and A both have units of energy and therefore go as   , hence entropy must go 

as   . So we see that entropy is the same as the total number of photons, to within a factor of a 

numerical constant, showing that it is just the information for a given photon. 
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Magnetic Systems 

A magnetic system is a collection of little magnets that align themselves in a strong magnetic field. In 

general they can point in any direction, further they are like small compasses in 3-D space. They 

have interactions between them that favour parallel aligned neighbours, these interactions are short 

range therefore interaction between neighbouring magnets are the only ones that we need to 

consider. When magnets want to align in the same direction they are known as Ferro magnets, when 

they prefer to align anti-parallel to each other they are known as anti-ferromagnetic. 

At very low temperature the lower energy states are important, and they all have the magnets 

aligned. They energy from them aligning parallel is now felt as the overall energy of the system is 

small. We make mathematical models for these magnets as we shall discuss below. 

Non interacting magnets (Z2) 

These magnets are modelled as having no interaction between magnets and they can align in only 

two ways, up or down. There is an energy function that favours neighbouring magnets to be aligned. 

At low temperatures the magnets either point up or down (let’s call them spins from now). The 

ground state is therefore 2-fold degenerate. A tiny B field in the vicinity of the spins will change the 

direction of the spins and cause them to align with it; this is called spontaneous symmetry breaking. 

This means the spins do not align randomly; instead there is a bias to either up or down (whichever 

the direction of the B field might be). Many systems in statistical mechanics can be modelled like 

magnets in this way as I shall discuss below.  

Consider a fluid (a collection of molecules that are free to move) in a box.  

 

 

 

 

 

Now imagine breaking up the box into cells that are so small, they are just the size of one molecule. 

Only one particle can fit into one cell, therefore each box either has a particle or not, analogue to the 

spins being up or down. Coming back to the spins, if we apply a small B field point down, the spins 

will align downwards. If we slowly bring the B field back to zero, the spins should remain pointing 

down. Now if the B field is pointed in the opposite direction, if spontaneous symmetry breaking 

(SSB) occurs the spins will face upwards immediately. If this were to happen for the fluid, it would 

mean the cells would go from being either empty(less dense) or full(more dense) to the opposite, 

which is an example of a phase transition. The question now is, what corresponds to changing the B 

field for a gas that will cause the phase transition and this turns out to be the chemical potential 

energy. 

SSB in mean field approximation 

Figure 45: Box of molecules 
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Consider a lattice with atoms in it that can have two configurations: 

  

 

 

 

 

 

In general we could have a Ð dimensional lattice. For a mean field approximation we are doing what 

the name suggests, taking the mean over a given field. Therefore the more the number of 

neighbouring molecules, the better the approximation works (for larger dimensions we have more 

neighbouring molecules).  

Now we can postulate an energy function for the system in Fig 46, let’s say that energy is minimised 

when the symbols are the same for the neighbouring particles: 

        

So we see that when the symbols are the same the energy is minimised. Therefore when a sign 

change occurs we have a change in energy of 2 units (-1->1). We can call this process the breaking of 

a bond. A broken bond will have two opposite symbols at either end: 

 

 

 

Broken bonds cost 2 units of energy therefore it favourable for a system to minimise the number of 

broken bonds, however as we raise the temperature, the number of broken bonds increases. 

Now consider a single molecule, its energy is: 

        ∑ 

  

 

Where the sum represents the sum over the nearest neighbour molecules. Suppose the spins have 

an average value: 

〈 〉    

Where S is between -1, 1, this is called the mean field. Therefore we can write a general equation for 

the energy: 

            

Figure 46: 2-D lattice of atoms 

Figure 47: Broken bond  
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Where the 2Ð represents the number of nearest neighbours in Ð dimensions. If the system is 

assumed to be magnetised (S≠0), the partition function is: 

     ∑       
 

    

                        

Therefore the energy is: 

〈   〉                

From the general equation for energy we can write down the average value of the spin: 

〈  〉    
〈   〉

   
          

 

 

 

 

 

 

 

 

This only makes sense if: 

〈  〉    

S is known as the magnetisation. 

 

 

 

 

 

 

 

 

𝛽 

     𝛽 𝑆 

Figure 48 

𝑆 

     𝛽 𝑆 

Figure 49 
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When the temperature is large the curve spreads out in S, the straight red line in the graph 

representing the magnetisation intersects the curve only once at the origin when the temperature is 

large (as the curve spreads away from the straight line). However as we decrease the temperature 

the curve becomes a box function like the one shown in Fig 49 and the magnetisation crosses it 3 

times. The two non-zero magnetisations are the average values of the spins. If the system was bias 

with an external magnetic field, it is only these two solutions that persist.  

As the temperature gets to the point of: 

      

The interaction points come down until they reach the origin; this means that the magnetisation is 

non-zero until it reaches this temperature, also known as the Curie temperature. This temperature is 

what corresponds to the changing of the magnetic field in a system of spins. This is called the Ising 

magnet as well as the Z2 magnet. The energy of this magnet is: 

           

Where J is a constant and must have units of energy since the sigmas do not have a unit. The basic 

method for a mean field is approximation is commonly used in physics (we used it in PH2510), to 

summarise: 

 If we want to study a particle in a large system with many d.o.f’s, then we can average the 

rest of the d.o.f and then set 1 d.o.f we want to study equal to the rest of the d.o.f average. 

 However the main limiting factor for this approximation is that the dimensions of space have 

to be increased to give accurate results. 

Now if we consider flipping two spins in 1-D, the energy input required will be 4 units (remember 2 

units for every spin), but the other nearest neighbour will also require an energy of only 4 units and 

so it will also flip, therefore there is an instability in 1-D systems. However in systems  in large 

dimensions this is not a problem as flipping two spins will cost 4 units of energy however in 2-D 

there are more neighbours therefore the amount of energy needed in more for the neighbours and 

therefore there is a stability in 2-D structures. 

Now if we consider the phase diagram of the spins against the temperature it looks something like 

this: 

 

 

 

 

 

 

 

Temperature   

Spin (h)  

TC   

Figure 50: Phase diagram 
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If h is less than zero it means that the spin is pointing down. Suppose we apply a B field that makes 

the spins align down in the first place, then we slowly remove the field, so the spins are still pointing 

down. On the phase diagram it would mean that we are approaching the h = 0 line from below. If we 

assume that there is some magnetisation even when the B field has gone to zero, there will be a 

jump discontinuity at the point of h = 0, as all the spins will jump from pointing down to pointing up.  

This is an example of a first order phase transition if we are talking about a gas. However this only 

happens when the temperature is below the critical point (we can make some intuitive sense of this 

because a higher temperature means the spins or gas molecules will have more kinetic energy and 

will be able to fluctuate a lot more, hence there will not be an abrupt change in density or the 

direction of spin), the temperature exceeds the critical point then the phase change is gradual and is 

known as a second order phase transition.  

Chemical Potential 

Imagine a set of boxes, where each of the boxes can have some energy and the energy can be 

exchanged by a weak interaction. Each box will have a probability distribution to have certain 

energy.  

Suppose we want to maximise the entropy subject to the constraint that the energy is fixed: 

∑    

 

   

          

So we use the method of Lagrange multipliers, and the probability distribution comes out of the 

form: 

   
    

 
 

Suppose that the particles are exchanged between them aswell. Then we have to add another 

constraint: 

∑  
 

   

This constraint basically states that the sum of all the particles in all the different states is the same 

total number of particles. 

We also know that: 

  
 
  ( )(                               ) 

Therefore we can use this to say: 

∑
  
 
  

 

 
  
 

 

∑ ( )   〈 〉
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The entropy is: 

    ∑ ( )     ( ) 

 

 

Using the Lagrange method a new equation is formed: 

    ∑ ( )     ( ) 

 

  ∑ ( )  
 

 

Where   is a Lagrange multiplier, to maximise this it is differentiated and set equal to zero: 

  

  ( )
  ∑    ( )       

 

   

And hence we arrive at the probability function: 

 ( )  
     

 
 

A similar method for the other constraint gives: 

 (   )  
          

 
 

Where    is the traditionally called the new Lagrange multiplier. With a little bit of thought it can be 

seen that   is the variable that controls the temperature and hence the energy in the box and   is 

the variable that controls the number of particles in the box and is called the potential energy. 

Now if we return to the phase diagram in fig 50, if we want to see what happens as we approach the 

critical temperature at h = 0, we first need to understand the idea of a correlation length.  

Suppose the average of spins at point a and b is given by: 

〈 ( ) ( )〉 

This is called the correlation function; at high temperatures the correlation is likely to be zero due to 

the random fluctuations of the spins. As T is lowered the spins tend to become parallel, hence the 

correlation function is likely to be to be positive and approach 1 (as the spins will either align up or 

down). We expect to lose the same fraction of correlation as we move away from the nearest 

neighbouring particles. It could be something like: 

〈 ( ) ( )〉     ( )  

D is the distance between spins and m is a temperature dependent constant, plotting this will give: 

 

 

  

〈𝜎(𝑎)𝜎(𝑏)〉 

D 
Figure 51: Correlation function varying with distance 
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The red line on the graph represents the correlation length with varies with temperature (is 

dependent on the parameter m that we defined in the exponential term).  m represents the distance 

that needs to be travelled before the correlation function drops by a factor of e for a given 

temperature.  

Now imagine going below the critical temperature, now all the bias of spins is in one direction, 

therefore the correlation length will become infinite and the correlation function will approach a 

constant value.  

As the critical temperature is approached the curve falls of as a power law, as supposed to an 

exponential: 

  
 

  
 

Suppose we look microscopically at the magnet as we approach the critical temperature, we see: 

 

 

 

 

 

 

We start seeing patches of spins all aligned equally; where the two differed colours represent the 

two different configurations of the spins. These patches are of course usually approximately the size 

of the correlation length. It is important to note that these patches don’t show all the spins pointing 

in the same direction, instead they shown patches of a preferred spin. As the temperature 

approaches the critical temperature, these patches become extremely large.  

They effectively cover the entire sample (as the correlation length approaches infinity) and they 

become extremely faded, meaning it is very difficult to tell between regions of different spin 

configuration preferences. In fact if we zoom in towards a patch we see a self-similar structure 

(similar to fractals), meaning that at every scale the structure looks the same. It is also known as 

scale invariance. 

Therefore the structure becomes completely isotropic, which is not expected as we do not expect 

the correlation length to be the same along the axis and at an angle of 45° for example. Therefore it 

can be said that at the critical temperature the system loses memory of its original structure. If the 

system was modified to include the second nearest neighbour interactions aswell, then the system 

will reach the same state once the critical temperature is obtained, the only difference will be in the 

value of the critical temperature and when the system is at high temperatures. 

 

Figure 52: microscopic view 
of the magnet near critical 

temperature 
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Inflation  

Inflation is the exponential expansion of the universe, driven by what is sometimes known as dark 

energy or vacuum energy or the cosmological constant, essentially it is the name given to the 

potential energy stored in the scalar field. A process called “reheating” was postulated to take place 

at the end of inflation. The form of this potential energy is completely unknown and therefore it was 

simply postulated that it was of the form: 

 

 

 

 

 

 

The scalar field has a kinetic energy aswell as a potential energy: 

   
  

  
 

    
  

  
 

Sometimes the potential energy is just combined as the kinetic energy due to combining of space 

and time in relativity. However this field also appears to have a potential energy that is independent 

of any derivatives and that is potential energy shown in fig 53. It is postulated that the universe 

began in a state of stable equilibrium (the reason is not known) at the point where the scalar field is 

zero.  At this point the potential was postulated to be very large and it got even larger as we moved 

away from the   = 0 point, before reaching a sharp drop. Therefore close to the centre position this 

system looks like a particle in a potential well, and the universe can, given sufficient time tunnel 

through the potential barrier just like a particle in a box. Therefore once it tunnels through the 

potential barrier, the universe drops down the potential hill and over time this potential energy is 

converted into heat (mechanism is unknown) and this stage is what became known as reheating.  

The problem is that unlike a particle in a box, the universe is many many particles in a box! And it is 
highly unlikely that all the particles in the universe would end up with a higher energy at exactly the 
same time. It is more likely that a small patches of the universe undergoes tunnelling and if the 
patch reaches a sufficiently large size it acts as some kind of a catalyst for the rest of the universe to 
undergo tunnelling an analogy to this is of the behaviour of really cold water (below freezing) that 
solidifies (undergoes a first order phase transition) when a block of ice is added. However this model 
turned out not to be true, because the mathematics of inflation showed that the expansion of the 
universe was much faster than the spreading of the small patches of the universe that had a greater 
energy could catalyse the tunnelling and therefore this transition would never be completed.  

 

PE (𝜙) 

Scalar field, 𝜙 

Figure 53: Postulated vacuum energy 
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Adiabatic variation of parameters  

We know the probability distribution of the system being in a given state has the form: 

  
    

 
 

Now suppose we vary the energy and the system and that the final energy and the initial energy are 
linearly related.: 

         

The probability distribution then becomes: 

   
   (     )

 
 

However this is not very helpful as we just get two new probability distributions. If a small system 
with only a few d.o.f is given and we change the parameters it will not stay in thermal equilibrium. 
But if the system is large it does stay in thermal equilibrium to a good approximation. The energy of 
a large system can be written in terms of the energy density : 

       

And for the final energy: 

       

Once again    can be a linear function of   . As usual for a large system the energy levels become 
very dense and we  can approximate sums with integrals. As the density is large for large energies, 
the density is a rapidly rising function when plotted against energy.  

The partition function can be written as: 

   ∫      
  

  
   

The exponential term is a very rapidly falling function and the number of particles per energy is a 
very rapidly increasing function (as the density increases for large energies) . Hence the number of 
energies that are actually available have a very limited range. 

Over this range the function must be linear and we expect the density to be a smooth function. Since 
the number of states are quantised we are simply counting them and therefore the variation in the 
energy follows Poisson statistics: 

     

   √  

  

 
 
 

√ 
 

In this case when V becomes large    can be linear with   . Therefore we must be dealing with a  a 
large system. The probability of a small system being in thermal equilibrium after in a change in 
adiabatic parameters is very small. 
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Gravity and thermodynamics 

A system which interacts solely via the gravitation force will have a negative heat capacity. To see 
why consider the small object orbiting a large object, as it orbits it will radiate away energy be that in 
EM waves or gravitational waves. Hence it will start to loose energy and spiral inwards. As it does so 
it will gain potential energy (which is negative) and kinetic energy. The Virail theorem shows that the 
increase in kinetic energy is always half of the increase in potential energy, this means that the 
system will have a negative heat capacity as the thermal energy will be equal to the kinetic energy 
and hence even though the overall energy of the system will be decreasing the temperature will be 
increasing! As shown with the black hole thermodynamics, these systems are incredibly unstable.  

Negative temperature 

Ordinarily temperature cannot be negative as the Boltzmann function will have a positive exponent 
and will not converge on to a value. The only way to have a negative temperature would be to have 
a system in which in the energy is bound somehow. A good example is the system of magnetic spins 
as the energy can simply have two values. We saw previously that the partition function for this 
system was: 

         

In this case having a negative temperature would make no difference as the function of cosh is 
symmetric about the origin, if we make a plot of energy against entropy we get something like this: 

 

 

 

 

 

 

We know that temperature is  
  

  
   

Which is inverse of the gradient of the curve, so we see that the first part of the curve is increasing 

hence has a positive temperature, the stationary point has the gradient 0 and hence has an infinite 

temperature, after the stationary point the curve is decreasing and hence has a negative 

temperature. In this magnetic system the temperature is negative if more than half of the spins are 

pointing upwards, this is called population inversion. 
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Figure 10 
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