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Abstract

The main objective of this document is to outline my understanding
of the reformed classical mechanics in terms of the principle of least ac-
tion and Hamilton and Lagrange’s equations. These notes are based on
mainly Professor Susskind’s lectures from Stanford at iTunes U and a few
other resources. I would highly recommend them to anyone looking to
understand the concepts of the subject.
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1 Introduction to classical mechanics

Classical mechanics is the basis of all of physics, not because it describes the
motion of particles and mechanical system, but because the structure of classical
mechanics carries over into all of physics, which include concepts such as the
conservation of energy and momentum.

1.1 A-level mechanics: Newtonian mechanics

The physics I was tought at A-level, involved mechanics in the form of Newtons
three laws of motion, I am sure anyone reading1 will remember these laws but
I will list them below anyway so that they are easy to refernce if needed in the
document2:

. Law I: Every body persists in its state of being at rest or of moving uni-
formly straight forward, except insofar as it is compelled to change its state
by force impressed.

Or more simply, an object remains in the same motion unless acted upon
by an external force. This is law introduces the concept of inertia, which
can be understood as the tendency of objects to resist changes in motion.
Infact Newton was not the first person to postulate this concept, Aristotle
has the view that all objects have a natural place in the universe (I shall
describe his views later on) and more recently Galileo put forward the
concept of inertia and was the first one to correctly formalise it (indeed
Newton gave credit to Galileo for this law and it is sometimes called the
Law of inertia).

. Law II: The change of momentum of a body is proportional to the impulse
impressed on the body, and happens along the straight line on which that
impulse is impressed.

Or the most familiar law ever3:

F = ma (1.1.1)

. Law III: To every action there is always an equal and opposite reaction:
or the forces of two bodies on each other are always equal and are directed
in opposite directions.

We shall see that these laws lead to conservation laws that apply throughout
physics. Firstly we set out the logic behind classical physics.

1which will be me most of the time!
2to make it look more classy then the high school definitions I have just got the literal

translations from the principia that are given on wikipedia
3other than maybe E = mc2
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1.2 Systems, states and laws of motion

Lets begin with the simplest system we can think off. An assumption we make
is that time evolves naturally and it can be any real number, and it only occurs
in discrete intervals. Now imagine systems that evolve in this time and only
have a small set of configurations (states).

Phase space

Sometimes also known as the space of states, is a mathematical space (e.g
Hilbert spaces) that contains all possible states of the system. A state can be
defined by all the information that one needs about the state to describe how
it will change from one instance to the next.

Two-state system

Suppose there is a system which only has two configuration(The phase space
will contain only two points as there are only two states), like a dice. So the
two possible states are:

Heads = H

Tails = T

Now we want add a laws of motion (LOM) for this two-state system which
describes how it will evolve in time.

LOM 1

A possible LOM for this system could be that when the system is in a given
state, it stays in the same state in the next interval of time:

H → H

T → T

Or equally on a map of states it would look like a loop diagram:

LOM 2
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Another LOM for this system could be that the system simply alternates be-
tween the two states:

H → T → H → T

The mapping would look like:

The important point about these laws is that they are deterministic, such that if
one knows what happens at a given instance, one can predict what will happen
next and infinitly into the future. To generalise this we could consider a system
with more than two states. We could consider a die as another example, ofcourse
it has 6 sides, therefore 6 states. Now we have a large variety of possible laws
for this system such as :

This law cycles through all the states, however we could have laws like:

These mappings show clear difference between this law and the previous one, as
this contains disconnected cycles. These are equally acceptable laws of physics;
as they are completely deterministic.
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Now consider the LOM:

This LOM is not allowed in classical mechanics as it is clearly non-deterministic
(at any given state, we do not know uniquely where to go next). As a rule of
thumb, we can say that for an acceptable LOM there should be only one arrow
coming in and one going out of a state, for a given mapping.

1.3 Conservation laws

Conservation laws come about when we have disconnected cycles (as shown
above), and they basicly state that some piece of knowledge about a system is
kept intact and does not change in time. As an example consider a two state
system with conserved quantities at each state, say + for state one and − for
state two:

In this case these arbitrary variables +, − are conserved as the LOM shows that
once you are in a state with one of these variables you always stay with that
variable. So we see that the conservation laws are associated with these closed
trajectories in phase space. This can also be called information conservation,
as we always keep track of where we started and this is the most fundamental
concept of classical physics.

Now suppose that for our two state system has a LOM that goes as follows:

HH → H
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HT → H

TH → T

TT → T

To explain the notation, the fact that therea are two letters means that the
previous two states are given, i.e the HH shows that the previous two states
were heads and so on. So if the only information that I have is that I am at
H then I will not know where to go next, I would need to know what the state
was before, (if it was H then I stay at heads if it was T then I go to tails).
This is fundamentally different from the other laws, as we need two pieces of
information, so far we have only needed one piece of information.

In reality if we want to predict the motion of a particle, ifinitely into the future
we need to know the exact location of the particle and its velocity, so it is very
much like the law which we made up above. Of course we know that everything
cannot be predicted infinitely into the future (just look at the british whether!)
4, the reason for this finite range of predictability is that there is always uncer-
tainty in any measurment one makes. We might say we know the position and
velocity of a particle but the precision of our knowledge always catches up with
us. To be able to predict infinitely into the future we would need to know this
information exactly.

This means that the phase space will have two axis (as supposed to one as
we had in the systems described in the previoue section), the mathematical ori-
gin of the two axis actually arrises from the LOM being Newton’s equations and
they happen to be second order differential equations:

F(x) = ma = m
d2x

dt2
= mẍ (1.3.1)

So if we know the position we can get the acceleration (as force depends on
position5), but there is no way to obtain the velocity so it has to be added in
as an extra piece of information.

1.4 Aristotle vs Newton

Before Netwon, greek philosophor Aristotle postulated this law:

F(x) = mv = mẋ (1.4.1)

4these leads to a very interesting philosophical arguement that I might include as a side as
it has puzzled me for years now

5as an analogy we can think of Coloumb force or gravitation force
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This shows that without any force we cannot have velocity, or in other words,
objects with no force acting on them will remain stationary (notice the subtelty
from Newton’s second law, where an object with no force, will not necessarily
remain stationary, but if it is already travelling at a velocity it will continue to
do so). And once again there is the usual assumption that we know what the
force is when we know the position. This law would mean that the only piece
of information we need would be the position of the particle. As knowing the
poistion would give the force and then we can just read of the velocity. We can
also get the acceleration from the equation by simply differentiating the velocity
w.r.t time:

dF(x)

dt
= m

d2x

dt2
= ma (1.4.2)

Now we may ask why would the force on the particle change with time and
the reason is that the particle will move under the influence of the force and
therefore the position will change and therefore the force will also change. Using
the chain rule we can write:

dF

dt
=

dF

dx

dx

dt
=

dF

dx
v (1.4.3)

Now we substitute this into 1.4.2:

ma =
dF

dx
v (1.4.4)

So without any further information we can deduce the acceleration aswell by
differentiating the force w.r.t position (which I assuming that we know the
force as a function of position). We could differentiate this equation w.r.t time
again and obtain the derivative of the acceleration (third moment of position),
sometimes known as Jerk :

mȧ =
dF

dx
a+

d2F

dx2
v2 (1.4.5)

Here I have just used the product rule, and we see that we can also calulate the
jerk and we can carry on for as many moments as we like. Therefore this law is
completely deterministic and only requires one piece of information. But this is
not how nature works, we know the reality is a little bit different.

Newton’s law

Not all the different from Aristotle’s law, in appearance, is Newton’s second
law:

F(x) = ma = mẍ (1.4.6)

In this case if one knows the position, the force is known as it depends on posi-
tion and the acceleration can the be read off. Now if we want to calculate the
velocity we would need to integrate the acceleration, which would mean inte-
grating the force w.r.t position. Ofcourse there is no problem in doing this, but

8



integrating without limits will give atleast one unkown constant term. To get
rid of it we would need to know the limits which would mean another position
or atleast another piece of information (we generally want the initial position
and velocity. Of course knowing the velocity is just the same as saying that we
know what the posistion is now and at a previous time).

Basically there is no way of calculating the velocity without any extra infor-
mation. Hence we have to add the velocity as an extra piece of information to
the initial condidtions. Once this is known the law is completely deterministic
and we can predict the configuration of the system at any given time in the
future.

1.5 Energy conservation

The concept of energy conservation has been viewed experimentally in every
physical experiment and here I shall show how it comes about from Newton’s
laws (I must stress that it is infact a much deeper concept and holds in all parts
of physics).

As I say this, firstly I will give an example of a hypothetical system in which
energy is not conserved. Suppose there is a force law that always pushes a par-
ticle around in a cricle, so the particle will increase in its velocity. So at the
same position in the circle the potential energy will be the same, as it depends
only on the distance from the particle (and the radius is always the same!),
but notice that its kinetic energy has increase. Even though this LOM is com-
pletely deterministic it is never observed as it violates the conservation of enegry.

In nature, forces are always conservative and of the form:

F = −∇U(x,y) (1.5.1)

This basicly states that the force in a given direction is proportional to the
change in potential energy in that direction. The total energy is the sum of the
potential energy,U , and the kintec energy,T :

E = U + T = U +
1

2
mv2 (1.5.2)

Now we want to prove that energy is conserved as a consequence of Newton’s
equations.

The time derivative of kinetic energy:

dT

dt
=

1

2
mv

dv

dt
2 (1.5.3)

= mv
dv

dt
= mva

9



The time derivative of the potential energy is:

U(x)

dt
=

∂U(x)

∂x

∂x

∂t
(1.5.4)

=
∂U

∂x
v

Now putting these together we can compute the time derivative of the total
energy:

∂E

∂t
=

∂T

∂t
+

∂U

∂t
(1.5.5)

= vma+
∂U

∂x
v

But according to Newton’s laws:

dU

dx
= −F = −ma (1.5.6)

Substituting this into the previous equation of the derivative of the total energy
we get:

dE

dt
= 0 (1.5.7)

So the total energy is conserved.

1.6 Momentum conservation

We are still talking about a single particle. Lets rewrite Newton’s equation as:

F = m
dv

dt
(1.6.1)

We are assuming that mass does not change with time, we can bring it inside
the derivative:

F =
d

dt
(mv) =

dp

dt
(1.6.2)

So for the momentum to be conserved the force has to be zero and this is the
form of Newton’s second law that we shall mostly use from now on.

Newton said that the force on every object is the sum of forces due to all
the other objects and forces between the particles are equal and opposite. We
want to show that the time derivative of the total momentum is zero. Suppose
we have three particles in our system; 1, 2, 3. The equations we get for the force
are as follows:

dp1

dt
= F1,2 + F1,3 (1.6.3)
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To clarify the notation, this equation is for particle 1 with momentum p1.
F1,2 represents the force on 1 due to 2
F1,3 represents the force on 1 due to 3
We have also assumed that the particle exerts no force on itself! (this is infact
a statement that the particle is not extended, it is point-like).

Similarly we have equations for the other particles:

dp2

dt
= F2,1 + F2,3 (1.6.4)

dp3

dt
= F3,2 + F3,1 (1.6.5)

The total force is:
dpT

dt
=

dp1

dt
+

dp2

dt
+

dp3

dt
(1.6.6)

Now we can substitute in the forces to get:

dpT

dt
= F1,2 + F1,3 + F2,1 + F2,3 + F3,1 + F3,2 (1.6.7)

But from Newton’s 3rd law we know that:

F1,2 = −F2,1 (1.6.8)

F1,3 = −F1,3

F2,3 = −F2,3

and so on... Therefore we are simply left with:

dPT

dt
= 0 (1.6.9)

Showing the fact that momentum is conserved.
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2 Lagrangian formulation and the principle of
least action

All of the things discussed were part of Newtonian physics that we are (or
atleast I was), taught at high school/ASfirst year level. However these laws
were written in a more general form that reveal the deeper concept of action in
physics. However before we get into the physics, I will briefly go through some
mathematical concepts that we will need.

2.1 Review: Integration by parts

Suppose we have: ∫ t2

t1

dt
dF

dt
(2.1.1)

If this was an indefinite integral it would have just returned the function F itself,
but because its between two limits, it just returns the value of the function at
two different times: ∫ t2

t1

dt
dF

dt
= F (t2)− F (t1) (2.1.2)

We can think of it by examining dF carefully. It basicly means infinitesimal
changes in the function:

dF = F (2)− F (1) (2.1.3)

where F (2) represents the function at point 2 and F (1) represents the function
at point 1 anf the points themselves are infinitesimally close; therefore in general:

dF = {F (2)− F (1)}+ {F (3)− F (2)}+ {F (4)− F (3)}...{F (n)− F (n− 1)}

The dt′s are similar time intervals and since they are in the numerator and
denominator they just cancel. So we get:

dF = F (n)− F (1) (2.1.4)

As the rest of the terms just cancel.
Now suppose F is a function of two functions:

F = f(t)g(t)

And in the integral we have dF
dt , so now we have to use the chain rule:

dF

dt
=

df(t)

dt
g(t) +

dg(t)

dt
d(t) = ḟg + ġf (2.1.5)

therefore the integral 2.1.2 becomes:∫ t2

t1

(
ḟg + fġ

)
dt (2.1.6)

12



We know that the integral has a solution of:

F (n)− F (1) = F (t)|t2t1 (2.1.7)

Now lets consider the special case in which the r.h.s of the equation above is
zero:

fg|t2t1 = 0

Then we can write: ∫ t2

t1

dtḟg = −
∫ t2

t1

dtġf (2.1.8)

So we see that one can readily change which function is differentiable by chang-
ing the sign as long as the boundary term is zero.

2.2 Minimising functions

Suppose we have a function f(y), that looks like

Figure 1: The function f(y)

At a minimum of the function we have the condition:

df(y)

dy
= 0 (2.2.1)

A local minimum is a minimum in a confined region.
A global minimum is the lowest minimum in the entire function.

The basic problem of mechanics is to determine the trajectory of a system from
its initial conditions. Particles have coordinates which describe their positions,
we can label them as q1, q2, q3, (x, y, z), in general we could have n number of
coordinates. But we have already seen that the q′s are not enough to predict
the future, we also need the velocities, q̇′s. To generalise we need 6n pieces of
information to predict the motion of n particles.
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By predicting the motion, I mean that we want to find out q1(t), q2(t), q3(t)
and so on. These variables as a function of time can be called trajectories (so a
set of q′s at every value of time)

2.3 Calculus of variations

The principle of least action reformulates the equations of motion given by Net-
won. The two pieces of information in this case are the beginning and end points
of the trajectory. This information is sufficient to tell us which trajectory the
system will take in phase space and the trajectory is uniquely determined by
the principle of least action. This tells us that there is some quantity that is
associated with this whole trajectory which is minimised for the unique trajec-
tory taken by the system.

Consider two points in phase space, connected by a random trajectory. Now
suppose we want the curve to take up the smallest possible length between the
two points. The answer is obviously a straight line between the points, but
this can be tough to show mathematically (as we would have to consider every
possible trajectory!). An easier way to see this is to zoom in on one part of the
curve
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Figure 2: A random trajectory connecting two points in phase space

The curve can be thought of as being made up of many of these curves. Lets ask
what would be the minimised trajectory on these smaller curves. The answer
does not depend on the beginning and final conditions of the system, it instead
depedns on the beginning and final conditions of the part we have zoomed in on.
The answer is obvious, that we should have the points connected by a straight
line. Now this is easy to generalise and say, just go ahead at every point in the
trajectory and we get a straight line.
To formulate this problem mathematically, consider again an infinitesimal sec-
tion of a curve in the x− y plane
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Figure 3: Infinitesimal part of a curve

In this case y is the function and x is the independent variable. The curve goes
through points x1 and x2, these are the starting and ending points and we want
to find the least distance between the two points. dS is just the small length
along the curve and is given by:

dS =
√

dx2 + dy2 = dx

√
1 +

(
dy

dx

)2

(2.3.1)

Therefore the overall length of the curve is given by the integral of dS:

S1,2 =

∫ x2

x1

dS =

∫ x2

x1

√
1 +

(
dy

dx

)2

dx (2.3.2)

Now the problem we face is making
(

dy
dx

)
as small as possible to minimise the

integral S1,2. So one might naturally say that we should make
(

dy
dx

)
= 0 , but

we cannot do that as that mean the gradient of the curve is zero, which is ob-
viously not the case in this case. So here we have defined mathematically what
the problem is; we have to find the function y(x), that minimises the expression.

The S here, depends on y(x), we can think of it as a function of a function
and such a quantity is usually called a functional. The result is still a num-
ber, but the input is a function. Examples of such problems include Fermats
principle of least time in optics, that states that light rays travel in paths that
minimise the time taken to travel to a given point (as supposed to taking the
path that is the smallest). Mathematically these problems are called calculus of
variations (and the principle of least action comes from this).
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2.4 Principle of least action

The action, A, is defined as:

A =

∫
(T − U)dt (2.4.1)

Where T generally stands for kinetic enegry and U is the potential enegry and
they take the general form of:

T =
1

2
mv2 =

1

2
m

(
dx

dt

)2

U = U(x) So its a function of position

Therefore the action can be written as:

A =

∫ (
1

2
m

(
dx

dt

)2

− U(x)

)
dt (2.4.2)

This may seem a strange defination, but the only way to test weather it is true
or not, is to test it for all classical system and see that it reproduces Newton’s
equations.

Lets compare it to the principle of least time in optics and the least distance
that I described in the graphs previously. In the previous case we had x as the
independent variable now we are using time as the independent variable. The
thing inside the integral is called the Lagrangian and in general it is a function
of the coordinates q′s and the derivative of the coordinates q̇′s:

L = L(qi, q̇i) (2.4.3)

Hence the action, in its most general form, is:

A =

∫ t2

t1

L(qi, q̇i)dt (2.4.4)

All of the laws of classical physics come from this principle of least action. A
counter example one could think of are the laws of thermodynamics as they
come from statistical principles, however the statistics itself describe a large
number of degrees of freedom (d.o.f) which in itself follow the principle of least
action.

In physics, systems can be described by local or global LOM. A local LOM
is one that describes how to move in the next instance at a given point in the
trajectory (such as Newton’s second law)

A global LOM is one that depends upon the entire trajectory of the system
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(not on any given point in the trajectory) and principle of least action (PLA)
is an example of this. It states that a trajectory in phase space has a quantity
associated with it known as the action that is minimised. To do this calculation
we need to know the q′s and q̇′s at the beginning and end of the trajectory.

Suppose we have a trajectory that is described by the dynamical variables:

q̂i(t) = Trajectory 1 (2.4.5)

The hat is there to show that this is the true trajectory of the system. Now if
we change the trajectory:

q̂i(t) + αfi(t) = Trajectory 2 (2.4.6)

where fi(t) is a subset of functions and α is just a number. The important point
is that we force the trajectory to pass through the initial and final points that
correspond to q̂i(t). Lets calulate the action for the trajectories. For trajectory
1 A is a function of the q̂i

′s. For trajectory two it is a function of α if we are
given qi and α.
For the true trajectory that corresponds to the PLA is the trajectory which has
α = 0. Therefore we can also say:

∂A(α)

∂α
= 0 when α = 0 (2.4.7)

Therefore the function A(α) has a stationary point at α = 0. The action was
defined as:

A =

∫ t2

t1

dtL(q(t)q̇(t))

Lets also define the derivatives:

dqi
dα

= fi(t)

dq̇i
dα

= ḟi(t)

Now lets see how much the action changes:

dA

dα
=

∫ t2

t1

dt
∂L

∂qi

dqi
dα

=

∫ t2

t1

dt
∂L

∂qi
fi(t) (2.4.8)

The Lagrangian changes a small amount as the q′s and the q̇′s will change a
little as α changes. But there is also another term that we have to add as there
is a change in the Lagrangian as q̇ changes:

∂A

∂α
=

∫ t2

t1

dt
∂L

∂q̇

dq̇i
dα

=

∫ t2

t1

dt
∂L

∂q̇i
˙fi(t) (2.4.9)
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So the overall derivative of the action w.r.t α is just the sum of the two terms:

∂A

∂α
=

∫ t2

t1

dt
∑
i

(
∂L

∂qi
fi(t) +

∂L

∂q̇i
ḟi(t)

)
(2.4.10)

Remember that fi(t) can be any function as long as it goes to zero at the
boundaries. But we have a fi(t) in the previous equation as well, which we
would prefer to be just fi(t) and we can obtain this by using integration by
parts:

∂A

∂α
=

∫ t2

t1

dt
∑
i

(
∂L

∂qi
fi −

(
d

dt

∂L

∂q̇i

)
fi

)
(2.4.11)

Note that the boundary term is zero, as the functions were stipulated to go
through the boundary points and to be zero at those positions. So now we set
∂A
∂α as is the requirement for minimising action:∫ t2

t1

dt
∑
i

(
∂L

∂qi
fi −

(
d

dt

∂L

∂q̇i

)
fi

)
= 0 (2.4.12)

The fi can now be taken outside the brackets:∫ t2

t1

dt
∑
i

(
∂L

∂qi
−
(

d

dt

∂L

∂q̇i

))
fi = 0 (2.4.13)

But we know that this has to work for any function fi (as long as it is zero at
the boundary), therefore the term inside the bracket must be zero:

∂L

∂qi
−
(

d

dt

∂L

∂q̇i

)
= 0 (2.4.14)

This has the form of a local equation as it states that at each point in the tra-
jectory the action has to be minimised. This is called the Euler-Lagrange(E-L)
equation. It is the most fundamental equation in all of physics.

Now we introduce some new notation:

πi =
∂L

∂q̇i
= Conjugate momentum (2.4.15)

This is a momentum corresponding to a posistion component qi (also known as
the canonical momentum conjugate).

∂L

∂qi
= Generalised component of force (2.4.16)

The principle of least action is not literally correct as we only require that
dS = 0. This means that S could be minimised, maximised or be a saddle
point. Since L = T − U , we can always increase S by taking having a high
kinetic energy and so the true path is never a maximum. However, it may be
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either a minimum or a saddle point, this fact is sometimes known as ”‘Hamil-
ton’s principle”’.

All the fundamental laws of physics can be written in terms of the principle
of least action6.

6Infact (almost) everything we know is described by the Lagrangian, L =
√
g(R −

1
2
FµνFµν + ψ̄ /Dψ)
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2.5 Examples

To cement the understanding of these new principles, we shall now do a few
examples that should be familiar.

Example 1: Single particle in 1D

The kinetic energy is:

T =
1

2
mẋ2 (2.5.1)

Potential energy:

U = U(x) (2.5.2)

Therefore the Lagrangian:

L =
1

2
mẋ2 − U(x) (2.5.3)

In this case the dynamical variables that were used to generalise the framework,
q′s, are replaced by x. Now we simply substitute this Lagrangian into the E-L
equation:

∂L

∂ẋi
= mẋ = p (2.5.4)

Here p has taken the place of π to show that this is simply the momentum we
are all familiar with since kinder garden. The other part of the E-L equation
is simply the derivative of the potential w.r.t to posistion as the kinetic enegry
term has no posistion dependance, so we arrive at the final result:

dp

dt
= −dU(x)

dx
(2.5.5)

Which is simply Netwon’s second law!

Notice that this is why we use the Lagrangian as T − U as if it were T + U
the sign in the equation above would have been different to what was expected
from Newton’s second law. The Lagrangian is not, in general, a conserved quan-
tity. If we have a large system with many particles in 3D the kinetic energy is
simply the sum of all the particles in the three dimensions.

Example 2: 2 particles in 1D with potential U(x)

Particle 1 : position = x1 (2.5.6)

mass = m1

Particle 2 : posistion = x2

mass = m2
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For this system we assume translational invariance. That means the potential
does not depend on where the particles are, it just depends on the distance be-
tween them (also known as translation symmetry). In other words; the system
does not change if all the components in the field are shifted by the same amount.

The Lagrangian is:

L =
1

2
m1x

2
1 +

1

2
m2x

2
2 − U(x1 − x2) (2.5.7)

Now we compute the E-L equation:

∂

∂t

∂L

∂ẋ1
= − ∂L

∂x1
(2.5.8)

But:
∂L

∂ẋ1
= p1 (2.5.9)

∂p1

∂t
= −∂U(x1 − x2)

∂x1
(2.5.10)

And similarly:

∂p2

∂t
= −∂U(x1 − x2)

∂x2
(2.5.11)

Suppose we relabeled (x1 − x2) with D:

U(x1 − x2) = U(D)

Now we can cleverly manipulate this:

∂U

∂x1
=

dU

dD

dD

dx1

dD

dx1
= 1

Similarly:

∂U

∂x2
=

dU

dD

dD

dx2

dD

dx2
= −1

So we finally get:
∂U

∂x1
= − ∂U

∂x2
(2.5.12)

Which is equivalent to:
dp1
dt

= −dp2
dt

(2.5.13)
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Which is just a statement of Newton’s third law. But if we rewrite this as:

dp1
dt

+
dp2
dt

=
dpT
dt

= 0 (2.5.14)

were pT is the total momentum. Now this is statement of the conservation of
momentum. So we see that the conservation of momentum comes about due to
translation symmetries (the fact that the potential only depends on the distance
between two points and not there position in space. This is an example of a
much deeper relation between symmetries and conservation laws as we shall see
later.

Example 3: Particle in 2D near the ground

So now there are 2 q′s corresponding to the two coordinates (vertical,y, and
horizontal,x). The energies are:

T =
1

2
mẋ2 +

1

2
mẏ2 (2.5.15)

U = ymg (2.5.16)

So the forces are:
∂U

∂x
= 0 (2.5.17)

∂U

∂y
= mg (2.5.18)

Hence F = −mg represents an attractive force (as expexted!).
The Lagrangian for the system is:

L =
1

2
mẋ2 +

1

2
mẏ2 −mgy (2.5.19)

The problem has a translation symmetry in the x direction but not the y direc-
tion as a change in y will change the Lagrangian. Note that we can always add
a constant into the potential energy and that doesnt change the motion as the
force is given by the derivative of the potential.

So we expecet to find one conservation law. Once again we compute the E-
L equation:

∂

∂t

∂L

∂ẋ
=

∂

∂t
mẋ (2.5.20)

∂L

∂x
=

∂(mgy)

∂x
= 0 (2.5.21)

Therefore:
d

dt
mẋ = 0 =

dṗx
dt

(2.5.22)
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Therefore the momentum in the x direction is conserved. Now doing the same
for the y component:

d

dt
py = −d(mgy)

dy
= −mg (2.5.23)

This just tells us that the vertical acceleration is proportional to the force of
gravity, but the y component of the momentum is not conserved as was expected
due to the fact that there wass no symmetry associated with it.

Example 4: Particle moving in a plane (circular coordinates)

Instead of using x and y we shall r (radius) and θ (angle from x-axis) to describe
the position. The velocity of the particle is given by:

vr = ṙ = Radial/tangential velocity (2.5.24)

vθ = θ̇r = Angular velocity (2.5.25)

So the kinetric energy is:

T =
1

2
mṙ2 +

1

2
mr2θ̇2 (2.5.26)

Suppose the potential energy of the system is coming from a central force. A
central force means the potential energy only depends on distance, so in this
case it would only depend on r. This means the system has rotational symmetry.
So the Lagrangian is:

L =
1

2
mṙ2 +

1

2
mr2θ̇2 − U(r) (2.5.27)

Now we shall compute the components of the E-L equation:

πi =
∂πi

∂t
=

∂L

∂q̇i
= mṙ (2.5.28)

where q̇i = ṙ. The E-L equation is then:

∂πi

∂t
=

∂L

∂qi
(2.5.29)

where qi = r, so we get:

mr̈ = mrθ̇2 − ∂U

∂r
(2.5.30)

Look at this closely, it is very similar to Newtons second law except for it has an
extra term mrθ̇2. First thing to notice about this term is that it is positive. We
can think of it as an extra force that is acting radially outward. This is called
(as im sure everyone knows) the centrifugal force, which has the apparent effect
of creating repulsion away from the center of rotation.
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Now lets do the same for the other dynamical variable, θ:

πθ =
∂L

∂θ̇
= mr2θ̇ (2.5.31)

The E-L equation is:
d

dt
mr2θ̇ =

∂L

∂θ
(2.5.32)

But

∂L

∂θ
= 0

So we get:
d

dt
(mr2θ̇) = 0 (2.5.33)

We know mr2θ̇ is called the angular momentum L. So the equation above is
a statement that L does not change with time and is therefore a conserved
quantity. The angular momentum is given by the initial conditions and remains
constant there-after in this system, so we get:

θ̇ =
L

mr2
(2.5.34)

Now we can substitute θ̇ into the E − L equation we got for r:

mr̈ = −∂U

∂r
+

L2

mr3
(2.5.35)

The main reason for me to rewrite the radial E-L equation like this is so that we
can see that the centrifugal force component goes as 1

r3 and the rest of the forces
are usually quadratic (like gravity and E-M) which means that the centrifugal
forces are much more significant at smaller distance (less than 1) then the other
forces.

2.6 New notation

Suppose we have a function:
F (αi)

So it depends on a bunch of variables αi. For the function to be minimised the
differentiated function w.r.t all the variables must be zero:

F (αi)

∂α1
=

F (αi)

∂α2
=

F (αi)

∂α3
.... = 0 (2.6.1)

This is usually denoted in shorthand by:

δF = 0 (2.6.2)

And it just means that if you are at the minimum of a the function F then a
small change in all of the α′s does not change the function to first order.
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3 Symmetries and conservation laws

The idea of a symmetry is a change that you can make, that does not affect
the action. For example, if we have a system of particles moving around and
the particles are interacting with each other but not an external object, then if
we take the whole system, including its entire motion and shift it by a specific
amount, the action (or equivalently the Lagrangian) does not change. This de-
fines a symmetry under translation.

Another example would be taking the system and rotating everything by the
same angles and the action not changing. Then the system is said to be invari-
ant under rotational transformations. So in general, a symmetry is defined by
the change that one can make in the coordinates that doesn’t affect the action.
We are particularly interested in infinitesimal symmetries (small changes in the
system).

But one can build any change out of many small changes. For example if I
want to rotate a system by 180◦ I can simply rotate the system 180 times by a
rotation of 1◦. In other words, working to first order. Lets define a transforma-
tion of coordinates:

qi = qi + ϵfi(q) (3.0.3)

Where ϵ is a small number and fi can be any function of the coordinates. The
statement of symmetry in this case is that after a transformation of the type
described above, the action of a trajectory does not change.

As an example consider the rotation under Cartesian coordinates:

Figure 4: Rotation transformation

Lets define δx as the change in the x coordinate. The ϵ in the diagram represents
a small change in the angle:

δx = −ϵy as sinϵ ≈ cosϵ ≈ ϵ for small angles (3.0.4)

Similarly:
δy = ϵx (3.0.5)

The sign simply depends on the direction of rotation. A symmetry would mean
that the action does not change after this rotation.
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3.1 Noether’s Theorem

Consider an axis consisting of two points that are connected by a trajectory, like
Fig:2. Lets suppose that this trajectory is a solution to the equations of motion.
That means δA = 0 for all changes of the trajectory as long as the end points
are the same. Now lets make a change in the trajectory which does change the
end points by a symmetry operation (such as moving both points equally in
space), but still δA = 0 since the transformation occurs in a symmetry (and a
symmetry is defined as a transformation that does not change the action).
Now lets compute the action after this transformation and see what this leads
to. As a reminder, the action is:

A =

∫
Ldt (3.1.1)

and

δA =

∫
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i (3.1.2)

Using integration by parts (as shown before), we can rewrite this as:

δA =

∫
δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
(3.1.3)

But now δqi is not zero at the end points (since the end points have also been
shifted), so the boundary term from integration by parts is still there, so we
have to add that term:

δA =

∫
δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
+

∂L

∂q̇i
δqi|t2t1 (3.1.4)

The important thing to realise is that the initial trajectory was a solution to
the E-L equation, which means it satisfies:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (3.1.5)

And the only thing that is different in this trajectory is the boundary term. So
we can infact ignore the first term inside the integral and write:

δA =

∫
∂L

∂q̇
δqi|t2t1 (3.1.6)

But the fact there is a symmetry tells us that δA = 0, so:

∂L

∂q̇
δqi|t2t1 = 0 (3.1.7)

But the boundary term is the difference between a quantity at two different
times. So the fact that the quantity is the same is the same as saying that

27



the quantity is conserved. So we immediately see how a conservation law comes
from the symmetry (Note that we have implicitly assumed that we are summing
over all coordinates). Therefore the conserved quantity is:

∂L

∂q̇i
δqi

But remember that δqi can be written as:

δqi = ϵfi(qi) (3.1.8)

So the conserved quantity can be written as:

∂L

∂q̇i
ϵfi(q) (3.1.9)

But the fact that this quantity does not change with time means that any
constants are irrelevant and we can ignore ϵ:

d

dt

(
∂L

∂q̇i
fi(q)

)
= 0 (3.1.10)

Another way to say it is that πi(qi) is a conserved quantity and this is called
the Noether charge.

Example 1: Translation

Set of particles that are invariant under translation. Lets move along the x-
axis, δxi, now is representing particle particle label. It does not label directions
of space, so δxi represents the change in the x coordinate of the ith particle,
which is just ϵ:

δxi = ϵ (3.1.11)

This just says that you translate by this small amount ϵ wherever you are. Lets
keep the symmetry just for the x-axis (of course there could also be a different
symmetry along y) and take:

δzi = δyi = 0 (3.1.12)

In other words all of the fi(qi) function that we defined before, are equal to
one for the x direction. For the y and z directions they are equal to zero. Now
lets calculate the Noether charge, so we sum over all particles, the canonical
momentum conjugate to the x coordinate times f :∑

i

πx =
∑
i

miẋi (3.1.13)

So we see that is the familiar momentum that is the conserved Noether charge
in this case. Notice that we did not need to know anything about the forces,
except for the fact that they do change when we move the whole system.
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Example 2: Rotation

Once again refer to the Fig . One particle moving in a plane, being rotated.
Once again we want to calculate the related Noether charge, first remember:

δx = −ϵy = ϵfx

δy = −ϵx = ϵfy

If ϵ is positive, then the rotation is anti-clockwise. If it is negative it corresponds
to a rotation in the clockwise direction:

fx = −y and fy = x (3.1.14)

Now we can work out the Noether charge:

−pxy + pyx = (xpy − ypx) = L (3.1.15)

Which is simply the z component of the angular momentum. And this holds
for all the particles in the system.

Time dependence

A closed system usually has a symmetry under transformations in time, by
which I mean the system should be able to go backwards in the same way that
it has come forwards in time. For example a planet and a star with no external
effects should rotate around their mutual centre of mass no matter at what time
we start looking at them.

Suppose again we have a trajectory that is a function of the dynamical variables
and that follows the equations of motion. But now the q’s depend on time, q(t).
Lets move the trajectory forward in time by an amount ϵ (and I mean each
point of the trajectory), so that t → t+ ϵ:

29



Figure 5: Time transformation

But we know that q now depends on time, so if you like we can also think of the
same translation by shifting the q’s in a particular way (in this case it would be
to the left in phase space). So lets try to formulate what happens to q at each
instance of time:

δq(t) = −∂q

∂t
ϵ (3.1.16)

The negative sign is there to show that a positive ∂q
∂t will shift the trajectory

backward in phase space. If there is a symmetry, we know that the action of
the new trajectory must remain unchanged. Towards the end of the trajectories
there are two extra pieces that we have to treat differently (look at the diagram).

Now lets write down the total change in the action between the two trajec-
tories. Firstly lets consider the action between ta and tb:

δA =

∫
dq

∂L

∂q
(−q̇ϵ) +

∂L

∂q
δq̇ (3.1.17)

Now we have two extra pieces at the ends which I have labeled A and B. So we
could just add them to the action:

δA =

∫
dq

∂L

∂q
(−q̇ϵ) +

∂L

∂q
δq̇ +A−B (3.1.18)

We do the usual integration by parts:

δA =

∫
dt[

∂L

∂q
− ∂

∂t
]δq + δq

∂L

∂q̇
|tbta +A−B (3.1.19)

The term in the brackets is zero as the trajectories obey the E-L equation and
δA = 0 because we have a symmetry. So we get:

δq
∂L

∂q̇
|tbta +A−B = 0 (3.1.20)

The first term shows the same contribution that we saw before from Noether’s
theorem, that came from integrating by parts. We know that :

δq = −ϵq̇ (3.1.21)

So we have:

−ϵq̇
∂L

∂q̇
|tbta +A−B = 0 (3.1.22)

Now we need to examine A B; they are both contributions that come from
shifting the trajectory by small amount ϵ. So the change in action at A is
simply L(ta)ϵ = A as the Lagrangian at point A will not have shifted if we
take ϵ to be infinitesimal. Same for B; L(tb)ϵ = B. So now we can put the
expressions for these contributions back in equation 3.1.20:
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ϵ(−q̇
∂L

∂q̇
|tbta + L(tb)− L(ta)) = 0 (3.1.23)

Now we can see as we did before that the Lagrangian evaluated between two
points along with the first term is zero. So the quantity L− q̇i

∂L
∂q̇i

is conserved.
Which can also be written as:

L− q̇iπi as
∂L

∂q̇i
= πi (3.1.24)

This is the conserved Noether charge for time translation invariance. This is
called the negative of the Hamiltonian, H, or equivalently:

H = q̇iπi − L (3.1.25)

which is the total energy of the system. Lets work this quantity for a system to
see that this really is the energy; so consider the Lagrangian:

L− 1

2
mẋ2 − U(x) (3.1.26)

The canonical momentum is:
π = mẋ (3.1.27)

So the first term in the Hamiltonian is:

q̇iπi = mẋ2 (3.1.28)

Then subtract the Lagrangian:

H = q̇iπi − L (3.1.29)

= mẋ2 − (
1

2
mẋ2 − U(x)) (3.1.30)

=
1

2
mẋ2 + U(x) (3.1.31)

This is infact the definition of energy (a quantity that is conserved under time
translation invariance).

3.2 Examples

Now I shall do some examples that show how the new methods of classical
mechanics are alot easier to work in, as supposed to Newtonian mechanics.
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3.2.1 Simple pendulum

Figure 6: Simple pendulum of rod of length r

In this set-up the only thing that changes with time is θ. Now, the x component
of the velocity is:

vx = θ̇r cos θ (3.2.1)

and the y component:
vy = −θ̇r sin θ (3.2.2)

Therefore the total velocity is simply:

v = (rθ̇ cos θ,−rθ̇ sin θ) (3.2.3)

The kinetic energy is then:

T =
1

2
mr2θ̇2(cos2 θ + sin2 θ) =

1

2
mr2θ̇2 (3.2.4)

Potential energy:

U = −rmg cos θ (3.2.5)
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So the Lagrangian for the system is:

L =
1

2
mr2θ̇2 +mgr cos θ (3.2.6)

The canonical momentum for the system is:

πθ = mr2θ̇ (Angular momentum) (3.2.7)

The E-L equation:

d

dt
mr2θ̇ = −mgr sin θ (3.2.8)

r2θ̈ = −gr sin θ

To see that these equations are the same as Newton’s laws would give we can
compute the Hamiltonian as that gives the total energy of the system:

H = πθ θ̇ − L (3.2.9)

= mr2θ̇2 −
(
1

2
m2 +mgr cos θ

)
= mr2θ̇2 −mgr cos θ

This can be immediately recognised as the total energy of the system, with the
first term representing the (rotational) kinetic energy and the second is simply
the potential energy.

Another way to think about it, is in terms of the moment of inertia,I, which is
defined as:

I = mr2 (3.2.10)

where r is the perpendicular distance from the pivot of rotation.

Using this we can rewrite the Hamiltonian as:

H = αIθ̇2 −mgr cos θ (3.2.11)

Where α is a constant that depends on where the pivot is and the shape and
structure of the rod.
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3.2.2 Double pendulum

Figure 7: double pendulum of rods of length r each

Lets calculate the kinetic energies first:

T =
1

2
m2θ̇2 ball 1 (3.2.12)

Now the second ball will be moving for two reasons, firstly the fact that ball 1
is moving and secondly under its own motion. So we have to add two velocities:

v2 =
(
rθ̇ cos θ + rϕ̇ cosϕ,−rθ̇ sin θ − rϕ̇ sinϕ

)
(3.2.13)

So the kinetic energy is:

1

2
mv22 =

1

2
m
(
r2θ̇2 + r2θ2

)
+mr2θ̇ϕ̇ (cos θ cosϕ+ sin θ sinϕ) (3.2.14)

The total kinetic energy is then:

T = mr2θ̇2 +
1

2
mr2θ̇2 +mr2θ̇ϕ̇ (cos θ cosϕ+ sin θ sinϕ) (3.2.15)
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but notice that:

cos θ cosϕ+ sin θ sinϕ = cos (θ − ϕ) (3.2.16)

Substituting this into the equation above:

T = mr2θ̇2 +
1

2
mr2ϕ̇2 +mr2θ̇ϕ̇ (cos (θ − ϕ)) (3.2.17)

Now the potential energy is:

U = −2mgr cos θ −mgr cosϕ (3.2.18)

The Lagrangian is then:

L = mr2θ̇2 +
1

2
mr2ϕ̇2 +mr2θ̇ϕ̇ (cos (θ − ϕ)) +mgr (2 cos θ + cosϕ) (3.2.19)

This problem does not have a conserved quantity as there is no symmetry (the
rotational symmetry is broken by the gravitational field). Now lets suppose that
this is happening in the presence of no gravity. So the Lagrangian is simply the
kinetic energy:

L = mr2θ̇2 +
1

2
mr2ϕ̇2 +mr2θ̇ϕ̇ (cos (θ − ϕ)) (3.2.20)

This Lagrangian is now invariant under these transformations:

θ → θ + ϵ

ϕ → ϕ+ ϵ (3.2.21)

Now the Noether charge for these symmetries can be calculated:

Q =
∑
i

πifi where πi =
∂L

∂q̇i
as fi = 1 (3.2.22)

So πi = πθ + πϕ, where:

πθ =
∂L

∂θ̇
= 2mr2θ̇ +mr2θ̇ (cos (θ − ϕ)) (3.2.23)

πϕ =
∂L

∂ϕ̇
= 2mr2ϕ̇+mr2θ̇ (cos (θ − ϕ)) (3.2.24)

Therefore:
πi = 2mr2θ̇ +mr2 cos (θ − ϕ)

(
ϕ̇+ θ̇

)
(3.2.25)

So this is the thing that does not change with time and it is the angular mo-
mentum.
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Now we can compute the E-L equation to finally obtain the equation of mo-
tion for this system7:

d

dt

(
2mr2θ̇ +mr2ϕ̇ cos (θ − ϕ)

)
= −mr2θ̇ϕ̇ sin (θ − ϕ) (3.2.26)

3.2.3 Harmonic oscillator

The pendulum is almost a version of the Harmonic oscillator (infact for oscilla-
tions near the equilibrium point will be harmonic). The potential energy of the
Harmonic oscillator is:

U = −mgr +
1

2
mgrθ2 (3.2.27)

Infact any function that has a smooth minimum can be approximated as a
quadratic term near the minimum. The mgr is a constant in the energy so can
be ignored, so the potential energy is just proportional to θ2 (it is quadratic).
As an example lets consider a mass spring system:

Figure 8: Mass spring system

The potential energy of the system is:

U =
kx2

2
(3.2.28)

So the Lagrangian is:

L =
1

2
mẋ2 − kx2

2
(3.2.29)

Computing the ingredients for the E-L equation:

d

dt

∂L

∂ẋ
= mẍ (3.2.30)

∂L

∂x
= −kx (3.2.31)

7solving it is another course in itself!
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Therefore the E-L equation is:

mẍ = −kx (3.2.32)

This is usually rewritten as:

ẍ = − k

m
x (3.2.33)

This has the solutions of the form:

x = A cosωt+B sinωt where ω2 =
k

m
(3.2.34)

Notice that there are two coefficients as the equations are second order. For
completeness, the canonical momentum is:

px = πx =
∂L

∂ẋ
= mẋ (3.2.35)

The Hamiltonian is:

H = pxẋ− L

= mẋ2 −
(
1

2
mẋ2 − kx2

2

)
=

1

2
mẋ2 +

kx2

2
(3.2.36)

Up until now we have dealt with the Lagrangian form of classical mechanics.
Next we shall talk about the Hamiltonian formulation of classical mechanics.
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4 Hamiltonian formulation

Hamilton decided that he did not want to work with q’s q̇’s, instead with q’s
and p’s. He same some kind of symmetry between q’s and p’s, p is generally
related to ẋ:

ẋ =
p

m
(4.0.37)

So the Hamiltonian for the mass spring system is:

H =
p2

2m
+

kx2

2
(4.0.38)

4.1 Hamilton’s phase space

In the Hamiltonian formulation, it is useful to look at the phase space. For this
particular system the phase space looks like:

Figure 9: Phase space of Hamiltonian 4.0.38, with trajectories of the system
with different total energies

Points in phase space represent the state of the system. To track its trajectory
through phase space, we can look at the Hamiltonian (remember the Hamilto-
nian is just the energy, and the energy of a closed is always constant). We see
that the equation has the form that describes an ellipse, in fact if the coefficients
of p2 and x2 are the same then it would be the equation of a circle (the total
energy determines the radius).

Changing the energy will change the orbit by changing the radius. The tra-
jectories intercept the axis when p = 0 or x = 0. When p = 0:

x =

√
2E

k
(4.1.1)

When x = 0:
p =

√
2mE (4.1.2)

The time it takes for the system to complete a full rotation in phase space de-
pends on the angular velocity ω. The longer ω the shorter the time it takes for
it to go around.
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Suppose you project the motion on to the x-axis; it would just move back and
forth, it oscillates! And the same for the p-axis. All systems move on surfaces of
constant energy (they do not have to be elliptical or circular). Suppose you now
take a little patch of area in phase space, this patch represents the uncertainty
in the knowledge of the initial conditions, it also just moves in phase space as
any other point, and the important thing is that it preserves its area over time.

In fact, the whole point of Hamiltonian formalism of mechanics is that no points
in phase space are lost (another way of saying the area/volume is conserved).
Newton’s equations are not of this type; suppose you are at a point in phase
space, one cannot predict the system’s future without knowing another piece of
information, such as the velocity. The equation itself is a second order DE:

m
d2xi

dt2
= Fi (4.1.3)

Suppose there are N such DE’s, it is easy to see that these can equivalently
be written as 2N first order DE’s. First lets define, something that we already
knwo:

m
dxi

dt
= pi (4.1.4)

So:

m
d2xi

dt2
=

∂pi
dt

= Fi (4.1.5)

Now we will have twice as many equations which involve xi and pi coordinates.

Since these are first order DE. Now one might think that we only need one
piece of information to predict the evolution of the system, however, there are
two equations, so two pieces of information would still be required (this just
shows that there is no new physics coming out of this formalism, it is just (yet)
another way of rewriting Newton’s equations.
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4.2 Legendre transformations & Hamilton’s equations

Firstly consider the simplest possible case; we have two variables v and p, but
these are not really two variables as they are functions of each other (p = mv).
Now suppose they are single valued functions of each other (i.e one v only
corresponds to one p). So the graph of p and v looks something like:

Figure 10: Single valued function of p and v, f(p, v)

Or more specifically, it cannot look like:

Figure 11: Double valued function of p and v

as a single value of p would have 2 values of v. For single valued functions, it is
possible to invent a pair of functions like:

L(v) such that
∂L(v)

∂v
= p (4.2.1)
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H(p) such that
∂H(p)

∂p
= v (4.2.2)

To see why we can write these functions, lets take the function drawn in ?? and
solve the equation for L:

L(v) =

∫ v

0

pdv (4.2.3)

So we take the integral from zero. On the graph we saw before that L is just
the area under the curve.
The same can be done for H:

H(p) =

∫ p

0

vdp (4.2.4)

Therefore H+L is the area of the rectangle which is given by p × v, or it can
also be written as:

H = pv − L (4.2.5)

This sets up a clear method, start with the Lagrangian, L(v), then differentiate
w.r.t v to get p and then use:

H(p) = pv(p)− L(v(p)) (4.2.6)

Now consider a small change of p and see how H changes:

δH = pδv + vδp− pδv = vδp (4.2.7)

So:
dH

dp
= v (4.2.8)

Which is how we defined the Legendre transformation. Now we ask what hap-
pens if there are many v’s, then the definitions become:

∂L

∂vi
= pi (4.2.9)

H(pi) =
∑
i

pivi − L(vi) (4.2.10)

∂H

∂pi
= vi (4.2.11)

Even though we have used pv as variables (which of course are just the momen-
tum and the velocity respectively), these definitions are completely general and
work for any variables that are related by a single valued function. This was
just a piece of mathematics.

In mechanics, the Lagrangian also depends on positions as well as velocities.
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In terms of the Legendre transformations, having the positions in there would
not have made any difference as we never differentiate w.r.t the position. So the
mechanics description of the relation between the Lagrangian and the Hamilto-
nian is:

H =
∑
i

pivi − L (4.2.12)

Now lets see how the Hamiltonian changes with small changes in both p’s and
q’s:

δH = piδvi + viδpi −
∂L

∂qi
δqi −

∂L

∂vi
δvi (4.2.13)

But we know that:

∂L

∂vi
= pi (4.2.14)

So the final equations simplify to:

∂H

∂pi
= q̇i (4.2.15)

∂H

∂qi
= − ∂L

∂qi
(4.2.16)

Now recall the E-L equation, it basicly states:

ṗi =
∂L

∂qi
(4.2.17)

Substitute this into Eq 4.2.16:
∂H

∂pi
= q̇i (4.2.18)

This completes the derivation of the two equations, that are called Hamilton’s
equations. I will write them out again (I would draw a box around them if I
knew how to do that, they are that important!):

∂H

∂pi
= q̇i (4.2.19)

∂H

∂qi
= −ṗi (4.2.20)

Here we see that mechanics gets re-packaged as a system of (two) first order
DE of great simplicity. All we need is one function of p’s and q’s and then we
immediately know how the point moves through phase space. (If you know p
and q, we can get q̇ and ṗ using Hamilton’s equations. One of the surprising
things this shows, is that with very different physical physical interpretation of
p’s and q’s there is a very profound symmetry between them. Its the study of
these equations that defines modern mechanics.
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At every point in phase space one can calculate ∂H
∂qi

and ∂H
∂pi

to get q̇i and
ṗi respectively. This defines a kind off velocity through phase space. Notice
that its the derivatives of the Hamiltonian w.r.t q and p as supposed to q and
q̇’s and we shall see that this has a profound implication.

4.3 1D particle and energy conservation

Starting with the simplest system, the Lagrangian is the same as before:

L =
1

2
mv2 − U(x) (4.3.1)

The Hamiltonian is:

H =
p2

2m
+ U(x) (4.3.2)

Now compute Hamilton’s equations:

∂H

∂p
= ẋ (4.3.3)

−∂H

∂x
= ṗ (4.3.4)

Which is just equivalent to Newton’s second law. We can also test for energy
conservation by differentiating the Hamiltonian w.r.t time. If it doesn’t change
then the energy is conserved. So lets compute it:

∂H

∂t
=

∂H

∂pi
ṗi +

∂H

∂qi
q̇i (4.3.5)

But we know that:

ṗi = −∂H

∂qi

q̇i =
∂H

∂pi

Substitute this into 4.3.5:

∂H

∂T
= −∂H

∂pi

∂H

∂qi
+

∂H

∂qi

∂H

∂pi
= 0 (4.3.6)

Which shows that energy is indeed conserved. This can be thought of in terms
of phase space; a system represented in phase space will move on contours of
constant energy in phase space. They can be closed curves aswell as lines (like
we previously studied in the Harmonic oscillator)
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4.4 Poisson brackets

We know from the Lagrangian formalism that conservation laws have to do with
symmetries. Lets ask weather a quantity, A, is conserved or not. Suppose A is
a function of qi’s and pi’s, so that at every point in phase space A has a unique
value. We want to know weather the time derivative of A is zero:

d

dt
A(pi, qi) =

∂A

∂pi
ṗi +

∂A

∂qi
q̇i

Ȧ = − ∂A

∂pi

∂H

∂qi
+

∂A

∂qi

∂H

∂pi
(4.4.1)

So we find that the time derivative of any quantity is a sum of two terms. To
generalise, we have to introduce a new notation of Poisson brackets. So for any
two functions; A(qi, pi) and B(qi, pi), the Poisson bracket is defined as:

{A(pi, qi), B(pi, qi)} =
∑
i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(4.4.2)

The Poisson bracket of any quantity with the Hamiltonian is its time derivative.
This is yet another formalism of classical mechanics and its a generalisation of
Hamilton’s equations. As an example q̇ must be the Poisson bracket of q with
H:

q̇ = {q,H} (4.4.3)

To see this, let us compute the Poisson bracket:

∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q
= {q,H} (4.4.4)

But we know that:
∂q

∂q
= 1 and

∂q

∂p
= 0

Using these along with the equation above it gives:

q̇ =
∂H

∂p
(4.4.5)

Which is what we expected from Hamilton’s equations. Similarly we can show
that:

ṗ = −∂H

∂q
(4.4.6)

Here we see that both of Hamilton’s equations are special cases of a much more
general rule that the time derivative of a function is the Poisson bracket of the
function with the Hamiltonian (striking similarity with Ehrenfest’s theorem in
Quantum mechanics).
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4.5 Liouville’s Theorem

This theorem is at the heart of the Hamiltonian formalism of classical mechanics.
It can be thought of as a generalisation of the idea of conservation of momentum.
It is easiest to explain using diagrams of phase space, so consider:

Figure 12: Phase space showing points of a system

Suppose the phase space is populated with a uniform density of points. The
points combined together will occupy some volume (I an saying volume, but
it could be a space in many dimensions depending on how many dynamical
variables are in the system):

Figure 13: Phase space showing volume patch occupied by points

As a system evolves the points in phase space will move around, so the shape of
the patch they cover will also change. However according to Liouville’s theorem
the volume of patch in phase space always stays the same and the shape always
maintains its topology. What is not generally conserved is the distance between
the points. This would still conserve the volume as the shape can stretch in one
direction and compress in another direction.
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The beauty of the Hamiltonian form of mechanics is this flow of volume in
phase space, as the entire flow is determined by the Hamiltonian. According
to Liouville’s theorem the flow is incompressible, to see what this means lets
consider a flow in 1D:

 

Figure 14: Points in 1D phase space

The density of the points is the same everywhere on the line. There is only one
possible motion that corresponds to an incompressible flow in this case and that
is the points simply move together with the same velocity along the line. If the
velocity was different, say faster at the back then at the front, then the points
would clump together.

Another way to say this would be to consider any given region on the line
and observe it over time. If the flow is incompressible, then the total number
of points leaving that space will be equal to the total number of points entering
that space in any given time interval.

So we can write that the change in velocity must be zero:

∂v

∂x
δx = 0 (4.5.1)

δx is finite but infinitesimal therefore ∂v
∂x = 0 for an incompressible fluid which

is what we would intuitively imagine. Now lets move to 2D:

Figure 15: Infinitesimal patch in phase space

We want to see how the number of points in the square above changes over time
(again we are implicitly assuming that the density is uniform). The number of
particles coming into the square through the vertical edges is given by following
the same logic as we used for the 1D case:

∂Vx

∂x
δyδx ∝ N (4.5.2)
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where N is the number of particles. For the horizontal edges:

∂Vy

∂y
δxδy ∝ N (4.5.3)

Therefore the net flux of particles is given by:

N ∝ ∂Vx

∂x
δxδy +

∂Vy

∂y
δxδy

∝ δxδy

(
∂vx
∂x

+
∂vy
∂y

)
(4.5.4)

So the flux which is the total number of particles passing a unit area is propor-
tional to the divergence of the velocity vector:

N

δxδy
∝
(
∂vx
∂x

+
∂vy
∂y

)
(4.5.5)

If the fluid is incompressible then the net flux must be zero, so the divergence
is also zero: (

∂vx
∂x

+
∂vy
∂y

)
= div(v) = 0 (4.5.6)

Now lets come back to phase space. The x’s are just coordinates so in the phase
space they represent the p’s and q’s. So the number of x’s is twice the number
of q’s (as we also need an equal number of q’s). The q̇’s and ṗ’s are the local
velocities in the phase space. Lets calculate the divergence of the flow:

dṗi
dpi

=
∂

∂pi

(
−∂H

∂qi

)
(4.5.7)

dq̇i
dqi

=
∂

∂qi

(
−∂H

∂pi

)
(4.5.8)

divvps =
dṗi
dpi

+
dq̇i
dqi

(4.5.9)

where vps is the velocity in phase space. Combining these equations gives:

dṗi
dpi

+
dq̇i
dqi

=
∂

∂pi

(
−∂H

∂qi

)
+

∂

∂qi

(
−∂H

∂pi

)
= 0 (4.5.10)

So we see that the divergence is zero.

Consider a particle in free motion (no potentials), and lets make up a La-
grangian:

L =
ẋ2

2
(4.5.11)

The canonical momentum is:
∂L

∂ẋ
= ẋ (4.5.12)
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Suppose we define a new coordinate:

y = αx (4.5.13)

where α is a constant. The derivative is:

ẋ =
ẏ

α
(4.5.14)

Rewriting the Lagrangian in terms of y:

L =
ẏ2

2α2
(4.5.15)

The canonical momentum is:

∂L

∂ẏ
=

ẏ

α2
= py (4.5.16)

Which is the same as:

py =
ẋ

α
=

px
α

(4.5.17)

So we see:

py =
1

α
px (4.5.18)

Notice what happens when we make a coordinate transformation that stretches
the x-axis, it shrinks the p-axis.

Figure 16: Coordinate transformation from x to y

4.6 Chaotic systems

Chaotic systems also have the same property that the area in phase space is
conserved. The idea behind chaotic systems is that we cannot know the value of
the p’s and q’s with infinite precision, such that they are represented by points
in phase space. In reality they will have some uncertainty in those values (usu-
ally depending on the apparatus being used to observe them).

Instead what we get is small spheres (or rectangles) as supposed to point, in
phase space that can be observed. The important thing to realise is that even
though the best one can observe is a sphere of a specific dimension, the real
particles in the world will have precise values (remember we are ignoring QM
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here). Therefore there could be very many (infact, an infinite number if it was
not for QM) points within our smallest possible viewable sphere, which over
time we cannot keep track off.

The next thing that happens in chaotic systems is that they will form very
large and spread out (fractalated) structures in phase space over time. They
still obey Liouville’s theorem, however due to the limitations of our ability to
measure things the volume they occupy in phase space appears to be larger.

Figure 17: Chaotic system

Most systems in nature are chaotic (given enough time and this is the origin of
the second law of thermodynamics)

4.7 Electromagnetic field

The electromagnetic(E-M) field was put together by Maxwell in the 19th century,
before this electricity and magnetism were seen as two different phenomena. The
electric and magnetic fields are both vector fields. The E-M field has one major
difference from the systems that we have studied so far because the magnetic
force depends on the velocity of the particle.

4.7.1 Magnetic field, B

The magnetic field is usually denoted by B. The force on a particle moving in
a magnetic field is:

F = q(v×B) (4.7.1)

We need one other concept, which is the vector potential,A. This is because, one
cannot write the mechanics of a charged particle just in terms of the magnetic
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field. The vector potential is defined by the condition that the magnetic field is
the curl of the vector potential:

B = curl(A) = ∇×A (4.7.2)

The special thing about things that are a curl of something is that they do not
have a divergence. This follows from the vector calculus identity:

div (curl(A)) = 0 (4.7.3)

Where A is any vector. So taking the divergence of both sides of Eq 4.7.1:

div(B) = div (curl(A)) = 0 (4.7.4)

But we shall assume that the vector potential is a fundamental object and that
B comes from it. Now the force on a charged particle can be written as:

F = qv× (∇×A) (4.7.5)

Suppose we want the z component of force:

Fz = q (vxBy − vyBx) (4.7.6)

In terms of A:

Fz = q{vx (∂zAx − ∂xAz)− vy (∂yAz − ∂zAy)} (4.7.7)

Now it is not obvious how this leads to Hamilton or Lagrange’s equations,
however we can guess an action and see what it gives:

S =

∫
Ldt

=

∫
mv2

2
dt+ q

∫
A · dxi (4.7.8)

The fist term is obvious as it is just the kinetic energy, but the second term
is a guess at the simplest possible term that relates the charge and the vector
potential. It is simply showing that suppose there is a vector potential ,A, at
each point in space, we simply integrate over small intervals in space. In other
words, take the component of the magnetic field along a given direction and add
up over all of the path.

The action can be rewritten as:

S =

∫
mẋ2

2
dt+ q

∫
A · ẋdt (4.7.9)

So the Lagrangian is:

L =
mẋ2

2
+ qA · ẋ (4.7.10)
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Now we want to see that the Lagrangian equations lead to the equation for force
that we previously saw. Firstly, the canonical momentum:

px =
∂L

∂ẋ
= mẋ+ qAx (4.7.11)

And similar equations for the y and z components. Sometimes mẋ is called the
mechanical momentum and the whole term is called the canonical momentum.

Now lets work out the EOM:

∂

∂t

∂L

∂ż
=

∂L

∂z
(4.7.12)

and similar equations for x and y. Computing the components:

∂

∂t

∂L

∂ż
= mz̈ + qȦz

= mz̈ + q

(
∂Az

∂x
ẋ+

∂Az

∂y
ẏ +

∂Az

∂z
ż

)
(4.7.13)

∂L

∂z
= q

(
ẋ
∂Ax

∂z
+ ẏ

∂Ay

∂z
+ ż

∂Az

∂z

)
(4.7.14)

So the E-L equation is:

mz̈ + q

(
∂Az

∂x
ẋ+

∂Az

∂y
ẏ +

∂Az

∂z
ż

)
= q

(
ẋ
∂Ax

∂z
+ ẏ

∂Ay

∂z
+ ż

∂Az

∂z

)
(4.7.15)

Moving the second term on the L.H.S to the R.H.S we get:

mz̈ = q

(
ẋ

(
∂Ax

∂z
− ∂Az

∂x

)
+ ẏ

(
∂Ay

∂z
− ∂Az

∂y

))
= q (ẋBy − ẏBx) (4.7.16)

Which returns the equation we had before:

F = q (v×B) (4.7.17)

As expected we have found the Lagrangian formulation for particles moving
in a B field. Notice that even though the Lagrangian depends on the vector
potential , the equations of motion do not (they only depend on B). So we can
vary the vector potential in certain ways that does not change the EOM and
this will be called choosing a gauge and will be discussed later.

Looking at this equation for the force, one might know parallels of the B force
to the frictional force in nature due to the velocity dependence. But there is a
fundamental difference between them. The frictional force acts along the axis
of the motion of a particle. On the other hand the force due to the B field acts
perpendicular to v and B due to the cross product.
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Now lets calculate the Hamiltonian:

H = piẋi − L =

mẋ2
i + qAxi ẋi −

(
mẋ2

i

2
+ qẋiAi

)
=

mẋ2

2
(4.7.18)

Which is just the kinetic energy. This shows that the B field does not contribute
to the energy, when expressed in terms of velocities. This is equivalent to saying
the B fields cannot do work. In this form we cannot use Hamilton’s equations
as they require momenta as supposed to velocities. So lets rewrite ẋi in terms
of the momenta:

ẋi =
pi − qAi

m
(4.7.19)

So the kinetic energy (Hamiltonian) is:

H =
(pi − qA− i)

2

2m2
(4.7.20)

So we see that all of a sudden when expressed in terms of the canonical momenta,
the expression for the energy does change and we can now apply Hamilton’s
equations (which would give the same EOM).

4.7.2 2D particle

Now lets consider the motion of a non-relativistic particle under the influence
of an E-M field in 2D. The force is:

F = q (E+ v×B) (4.7.21)

This is known as the Lorentz force. Recall that:

E = −∇V (4.7.22)

B = ∇×A (4.7.23)

where V is the potential:
U = qV (4.7.24)

The only action that leads to the EOM of the Lorentz force are written in terms
of the vector potential A:

S =

∫ (
1

2
mẋ2

i − qV

)
dt+

∫
qAi · dxi (4.7.25)

Lets rewrite this as:

S =

∫
1

2
mẋ2

i dt+ q

∫
Aidxi − V dt (4.7.26)
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The equation in this form shows a striking symmetry in the potential terms. Its
almost as if A is related to space in the same way that V is related to time.
Infact if written as four vectors in terms of the special theory of relativity we
could simply write a single potential that was a four vector for the E- field:∫

Aidxi − V dt =

∫
Aµdx

4 (4.7.27)

The notation here is Amu = A0,1,2,3 where A3 = V .

The second term can be rewritten as:

q

∫
dt (A · v− V ) (4.7.28)

So the Lagrangian becomes:

L =
1

2
mẋ2

i + qAv̇− V (4.7.29)

Now lets examine what we can do to the vector potential that does not change
the B field or the equations of motion. This can be thought of as a symmetry
as changing the vector potential has to influence on the motion, its called gauge
invariance. First lets examine the z component:

(∇×A)z = ∂xAy − ∂yAx (4.7.30)

Suppose I add a gradient to the vector potential:

A → A+
∂

∂xi
λ(x, y) (4.7.31)

And similar equations for the y component.

Lets recalculate the curlA now:

∇×A = ∂xAy − ∂yAx + ∂x∂yλ− ∂y∂xλ (4.7.32)

But the last two terms are the same and therefore cancel, leaving the curl(A)
unchanged. In summary, adding the gradient of a scalar to a vector does not
change its curl. This can also be seen from the trigonometric identity:

curl (grad(λ)) = 0 (4.7.33)

for any scalar λ. Now if we calculate the canonical momentum for this La-
grangian we get:

px = mẋ+ qAx (4.7.34)

But now we see that if A is changed the momentum also changes which means
the momentum is not gauge invariant. Now lets compute the E-L equation:

d

dt

∂L

∂ẋi
= mẍ+ q

∂Ax

∂x
ẋ = q

∂Ax

∂y
ẏ (4.7.35)
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∂L

∂x
= q

∂Ax

∂x
ẋ+ q

∂Ay

∂y
ẏ − q

∂V

∂x
(4.7.36)

So the E-L equation is:

mẍ+ q
∂Ax

∂x
ẋ = q

∂Ax

∂y
ẏ = q

∂Ax

∂x
ẋ+ q

∂Ay

∂y
ẏ − q

∂V

∂x
(4.7.37)

Which simplifies to:

mẍ = −q
∂V

∂x
+ qẏBz (4.7.38)

This reproduces the x-component of the Lorentz force. So even though the mo-
mentum was not gauge invariant, the EOM is gauge invariant. Whenever one
hears about gauge invariance, we are always talking about some kind of redun-
dancy that is necessary to work out the canonical formulation of the theory.

Now we can consider an example of a uniform magnetic field, this is the simplest
situation. Suppose we want Bz to be independent of position:

Bz = ∂xAy − ∂yAx (4.7.39)

Lets say the magnitude of the magnetic field is:

|B| = b (4.7.40)

Suppose we choose the following gauge:

Ay = bx

Ax = 0 (4.7.41)

In this case it is clear that Bz is constant, substitute Eq 4.7.41 into Eq 4.7.39 :

∂xAy = b

yAx = 0 (4.7.42)

Which proves Eq 4.7.39. So this is one possible choice of vector potential which
will give rise to a uniform magnetic field. Other possibilities include:

Ay = 0

Ax = −bx (4.7.43)

Ay =
1

2
bx

Ax = −1

2
bx (4.7.44)

54



These different vector potentials are related by gauge transformations. Infact,
there is some scalar that can take us from one to the other set of potentials. We
can choose any of these gauge’s as the equations of motion do not depend on
A, they just depend on B

Firstly, lets focus of the first gauge. The Lagrangian is:

L =
1

2
m(ẋ2 + ẏ2) + qAxẋ

=
1

2
m(ẋ2 + ẏ2) + qbyẋ (4.7.45)

Now lets calculate the canonical momenta conjugate to x and y:

px =
∂L

∂ẋ
= mẋ+ qby (4.7.46)

py =
∂L

∂ẏ
= mẏ (4.7.47)

Remember that momentum conservation comes about due to invariance under
translation in position. So we can immediately see that the px is a conserved
quantity as there is no x dependence in the Lagrangian. In other words the
equations of motion are unchanged under the transformation:

x → +ϵ (4.7.48)

But under the transformation:

y → y + ϵ (4.7.49)

the equations of motion do change due to the y dependence in the Lagrangian.
If px is initially zero, it will always be zero, so we get:

mẋ+ qby = 0

ẋ =
qb

m
y (4.7.50)

But this y dependence came about from the choice of gauge we made. If we
choose the second gauge shown above, the Lagrangian becomes:

L =
1

2
m(ẋ2 + ẏ2)− qbxẏ (4.7.51)

It is clear that following the same procedure as we did for the previous gauge,
this will conserve Py. So for this gauge we get:

Py = mẏ − qbx (4.7.52)
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Hence it is seen that:

ẏ ∝ x

ẋ ∝ y

These equations actually describe circular motion, as they have solutions of the
form:

x = r cosωt (4.7.53)

y = r sinωt (4.7.54)

where8:

ω =
qb

m
(4.7.55)

Here we have reformulated the very basic calculations of E-M in terms of the
new formulation of mechanics. Since we assumed that the magnetic field was
completely homogenous, the same results should be obtained in any region of
space. To see this, we can simply shift the point about which the charged
particle is moving as follows:

x = r cosωt+ x0

y = r sinωt+ y0

This will not change ẋ and ẏ. Now lets recalculate the conjugate momenta to
x:

px = mẋ+ qby = −mrω sinωt+ qbr sinωt+ y0 (4.7.56)

Now if we substitute for ω we see that things start to cancel and what is left is:

px = y0bq (4.7.57)

And a similar expression is obtained for py:

py = −qbx0 (4.7.58)

Here we see a remarkable result that the momenta are simply proportional to
the position of the point around which the particle is rotating. So another way
to think about this is that the conservation tells us that the circle in which the
particle is moving does not move itself (as the momentum depends on where it
is).

Now lets put the electric field back in. For now lets say the electric field, E
is just in the x-direction:

V = −Ex (4.7.59)

∂V

∂x
= −E (4.7.60)

8Recall this as the cyclotron frequency of charged particle in magnetic field
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So the Lagrangian in the first gauge becomes:

L =
1

2
m(ẋ2ẏ2)− qbxẏ + qEx (4.7.61)

The canonical momentum is still the same. But it is no longer conserved; as
there is an explicit x dependence in the Lagrangian. We can compute the E-L
euqation to see this more clearly:

d

dt
px =

∂L

∂x
= qE (4.7.62)

So we see that this just gives back the equation for force on charged particle in
an electric field:

Fx = qEx

But the py remains unchanged as the electric potential does not depend on y.
Therefore the new equations of motion are:

mẋ+ qbdoty = qEmẏ − qbẋ =
0(4.7.63)

Lets solve these equations. For simplicity lets look for solutions with no accel-
eration, so mẍ and mÿ are zero. Hence:

ẏ =
E

b
(4.7.64)

ẋ = 0 (4.7.65)

We see that ẏ is constant as we expected and so is ẋ. So in the x− y plane the
motion is like:

Figure 18: Motion of charged particle in E field

The interesting thing here is that we put the force in the x direction and it causes
the particle to move in the y direction, which is completely counter intuitive. Its
like pushing an object sideways and starts moving vertically!! This remarkable
phenomena is called the Hall effect.
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5 Poisson brackets & canonical transformations

We return to the description of Poisson brackets as it is a whole different de-
scription of mechanics and this time we will see some of the applications of it.
This is a highly abstract form of mechanics (infact there would be no point in
learning it, if it were not so closely related to QM).

5.1 Review

Lets begin with Hamilton’s equations:

∂H

∂pi
= q̇i (5.1.1)

∂H

∂qi
= −ṗi (5.1.2)

Lets take some function of pi and qi, A(pi, qi). As the function moves through
phase space, its value changes over time. This is not because the function
changes over time, but because the qi’s and pi’s change. To see how A(pi, qi)
changes along its trajectory through phase space, we can differentiate it:

Ȧ =
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi
(5.1.3)

For a general pair of functions, A(pi, qi) and B(pi, qi) a Poisson bracket is defined
as:

{A,B} =
∑
i

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(5.1.4)

Therefore combining this with the equation above:

d

dt
A(pi, qi) = {A,H} (5.1.5)

If A(pi, qi) = p, we get:
dp

dt
= −∂H

∂q
(5.1.6)

This is just one of Hamilton’s equations. Now if A(pi, qi) = p we get the second
Hamilton equations:

dp

dt
=

∂H

∂p
(5.1.7)

5.2 Properties of Poisson brackets

Here I shall list a set of properties that the Poisson brackets have, they can
simply be thought of as definitions (I will not prove all of them, but they are
quite straightforward to derive):
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{A,B} = −{B,A} Anti-commutation (5.2.1)

{pi, pj} = {qi, qj} = 0 (5.2.2)

{qi, pj} = δij (5.2.3)

{pj , qi} = −δji (5.2.4)

{pi, F (qi, pi)} = −∂F

∂qi
(5.2.5)

{pi, F (qi, pi)} = −∂F

∂qi
(5.2.6)

{qi, F (qi, pi)} =
∂F

∂pi
(5.2.7)

{αA,B} = α{A,B} Linearty (5.2.8)

{A+ C,B} = {A,B}+ {C,B} (5.2.9)

{AB,C} =
∂(AB)

∂q

∂C

∂p
− ∂(AB)

∂p

∂C

∂q

= A
∂B

∂q

∂C

∂p
−A

∂B

∂p

∂C

∂q
+B

∂A

∂q

∂C

∂p
−B

∂A

∂p

∂C

∂q

= A{B,C}+B{A,C} (5.2.10)
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5.3 Canonical transformations

Phase space has a structure to it. Structures are things that are invariant under
various transformations. What Poisson brackets do; is they describe flows in
phase space (like the motion of a fluid represents a flow). One kind of flow
is just the motion of the phase space (or the points in it) with time. For ex-
ample we can consider flows in coordinate space (i.e x-y axis). We can think
of a rotation in space as defining a kind of flow in space. To do this imagine
the rotation taking place over an infinite number of intermediate steps (i.e a
continuous transformation).

Transformations are changes in a system that do not change the dynamics of
a system, i.e the system has some forms of symmetries. In the cases that have
been looked at so far, the symmetries were typically of the form:

Q = Q(q) (5.3.1)

So the variable q or p is changed without mixing it with the other (i.e a mo-
mentum never becomes a position and vice-verse). The question now is; are
there more interesting symmetries in nature that do mix up the p’s and the q’s,
without changing the physics of the system.

We want to find these transformations. Suppose we have a phase space with p’s
and q’s and we make the following transformations:

P = 2p

Q = 2q (5.3.2)

Now we have to check weather this preserves the Poisson bracket structure (as
this is what describes the dynamics of the system). So lets calculate the Poisson
bracket:

{P,Q} = 4 (5.3.3)

which is clearly not the same as Eq 5.2.3, so the Poisson bracket properties are
not satisfied and this is not a valid transformation. Now lets try the transfor-
mation:

P =
1

2
p

Q = 2q (5.3.4)

Now the Poisson bracket is:
{P,Q} = 1 (5.3.5)

which clearly does work. Infact this is doing the same thing as described in Fig
16. That is; we are stretching the phase space in one direction and squeezing it
by an equal amount in the other direction and hence conserving the area and
this obeys Liouville’s theorem.
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Another slightly more complex example of transformations is:

P = p cos θ + q sin θ

Q = −p sin θ + q cos θ (5.3.6)

This is a form of rotation in phase space. Computing the Poisson bracket:

{Q,P} = {q cos θ − p sin θ, p cos θ + q sin θ} = cos2 θ + sin2 θ = 1 (5.3.7)

So this transformation also conserves the Poisson bracket structure. In gen-
eral, the transformations that conserve the Poisson bracket structure are called
canonical transformations.

If we can build up all the transformations from infinitesimal transformations,
where infinitesimal transformation means:

Qi = qi + δqi(qi, pi) (5.3.8)

(the point of adding an infinitesimal term is that we can drop higher order
terms), then we can define canonical transformations as:

{Q,P} = {q, p}+ {δq, p}+ {q, δp} (5.3.9)

Note that I have left out a term, {δq, δp} as that is very small and therefore
neglected. We want the Poisson bracket structure to be conservd, i.e:

{Q,P} = {q, p} (5.3.10)

This means that we require:

−{δq, δp} = {q, δp} (5.3.11)

And this is what defines a canonical transformation. Suppose:

δq = ϵ{q,G(p, q)} (5.3.12)

where G(p, q) is called the generator of the canonical transformation and similar
expression for p:

δp = ϵ{p,G(p, q)} (5.3.13)

We claim that if δp and δq are obtained using the generators, then the Poisson
bracket structure is conserved. To prove this lets compute:

{q,G(p, q)} =
∂G(p, q)

∂p
(5.3.14)

Inserting this into Eq 5.3.12:

δq = ϵ
∂G(p, q)

∂p
(5.3.15)
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Similar for δp:

δp = −ϵ
∂G(p, q)

∂q
(5.3.16)

Substitute this into one the definitions:

{p, δq} = −{δp, q} (5.3.17)

ϵ{∂G(p, q)

∂p
, p} = ϵ{q, ∂G(p, q)

∂q
}

ϵ
∂G(p, q)

∂p∂q
= ϵ

∂G(p, q)

∂q∂p
(5.3.18)

This completes the proof that δp’s and δq’s that come from generators main-
tain the Poisson bracket structure. Infact, we have found that flows created
by Poisson bracketting with respect to a generator. always defines a canonical
transformation.

A special case of this is the Hamiltonian flow. All canonical transformations
can be created by choosing an appropriate generator (it is as if in our mind, we
could image a Hamiltonian that cause a flow that took points in phase space
from one point to another). Infact G could just be the Hamiltonian for another
system!.
If we do a canonical transformation on a system, what is the subclass of trans-
formations that are called symmetries?

The answer is; symmetries are the transformations that do not change the
Hamiltonian(energy). The best way to make sense of this is by looking at
the phase space:

Figure 19: Flows in phase space

Here the red lines represent the flow coming from the generator and the blue
lines represent the flow coming from the Hamiltonian. In general, the flow com-
ing from the generator will affect the flow coming from the Hamiltonian, which
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will change the energy. The only time the energy will not change is if the gen-
erator flow will move the system along lines of constant energy in phase space
and this is what is called a symmetry.

Lets take a general function of q and p and see how it changes along the flow
due to the generator:

δA =
∂A

∂p
δp+

∂A

∂q
δq (5.3.19)

Substitute for δp and δq using Eq 5.3.15 and Eq 5.3.16:

δA = −
(
∂A

∂p

∂G

∂q
+

∂A

∂q

∂G

∂p

)
ϵ = ϵ{A,G} (5.3.20)

This is exactly the same formula that we used for the Hamiltonian, when G was
the time derivative. So for the energy to be conserved, we get the condition:

{H,G} = 0 (5.3.21)

As it says that H does not change along the flow G. Infact we can flip the
equation:

{G,H} = 0 (5.3.22)

and say that G does not change with time. So G itself is a conserved quantity
(remember every symmetry has a conserved quantity associated with it, so this
is intuitively pleasing).

As an example, lets consider the Hamiltonian of a free particle in 2D:

H =
p2

2m
=

(p2x + p2y)

2m
(5.3.23)

and the angular momentum is:

Lx = xpy − ypx (5.3.24)

Lets suppose that the angular momentum is the generator in this case, Lx = G:

{G,H} = {xpy − ypx,
(p2x + p2y)

2m
}

= {xpy,
p2x
2m

} − {ypx,
p2y
2m

}

= py{x,
p2x
2m

} − px{y,
p2y
2m

}
= pypx − pypx

= 0 (5.3.25)
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6 Deterministic laws and the need for Quantum
mechanics*

To conclude I would like to briefly talk about an idea that has bothered me for
a long time, and since I have started studying physics my idea has become even
more puzzling.

Until the 19th century it was believed that all the laws of physics had been
worked out 9. Now I shall present an argument that will lead to profound con-
sequences on the assumption of those laws. If nature really obeys Newtonian
mechanics and statistical mechanical models of thermodynamics, then consider
the ”‘beginning”’ of the universe (I shall not discuss the what the beginning
was, that is discussion for another time!), whatever/wherever it was. All the
particles will have had a certain position in space and would have been subject
to certain forces, which were believed to be Newtonian mechanics and thermo-
dynamics.

The most fundamental concept in these laws, is that they are deterministic
and this is what I have been stressing all through this course. But if this is
really how nature works, then at that very point when the universe ”‘began”’
surely everything had to have been decided, in terms of how the universe was
going to evolve as t → ∞, which would surely mean that we cannot influence
anything in the future, not even our future! This would mean that the concept
of free-will is an illusion, which itself would lead to extremely serious permuta-
tions in all walks of everyday society. For example the law system, a criminal
could claim that what he did, was not actually his fault, it was decided at the
beginning of the ”‘universe”’. I fully understand how speculative this idea is,
and that it is probably not an argument to be had as part of a physics course,
however I feel that it is very important (although I doubt it will help anyone
pass their classical mechanics exams!).

I have to stress that the argument that we can never measure something to
infinite precision due to our equipment not being completely predictable, does
not affect the point I am trying to make. The point is that it doesnt matter
weather we can predict the future; nature has itself has already decided what
will happen in the future. I suppose this leads to the question about why did
the universe begin the way it did. This is a question that most physicists never
go anywhere near, infact whenever a fundamental problem is questioned by the
term why, the answer becomes unknown but again this is another statement one
could discuss for hours so its not something I could write about here. Returning
to the point I am making, it seems as if the deterministic laws even though seem
obvious to us in our everyday life, if thought about carefully lead to remarkable
problems.

9as quoted by Lord Kelvin
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Another consequence of these deterministic laws is that they would mean nat-
ural processes like Darwinian evolution, which are fundamental dependent on
randomness in nature, would no longer be considered random. It almost as if
they would have a purpose and I think this is an argument that would certainly
light up people with a creationist view as if there is a ”‘creator”’ who created
the universe than indeed he would be the one responsible for everything that
happened in the universe in accordance with these deterministic laws.

In my mind this leads to a need for LOM that are not completely deterministic.
Indeed these were provided in the form of Quantum mechanics (QM) in the
20th century with the work of Einstein, Schrodinger, Heisenberg etc. The laws
of QM are probabilistic (of course non deterministic laws do not have to follow
laws of probability, they could be completely random, but probabilistic laws are
certainly better than deterministic laws if one wants to overcome the argument
that I presented) as supposed to deterministic as nature has an inherent un-
certainty hidden in it that is described by the famous Heisenberg uncertainty
principle. It is important to emphasise that this uncertainty does not originate
from imprecision in measuring equipment or anything, it is always there in na-
ture.

As an example, suppose there is a particle which only has a property of spin.
Suppose it is prepared with a particular spin, and try to measure it using an
apparatus (what the apparatus is and how a spin is prepared is not important
here). Even though a spin is prepared in a particular state, there is no way
to say, a priori, what the outcome of the measurement would be. Quantum
systems exist in states of superposition and ”‘collapse”’ into a particular state
when a measurement is made and there is no way of determining what the out-
come will be, one can simply make probabilistic statements. In this example of
the spin, all we can say is that the spin can either be ”‘up”’ or ”‘down”’ with a
50/50 chance (assuming there are no external affects like magnetic fields). These
probabilistic LOM would provide a way out of the argument that everything
was decided in the beginning as we have no way of determining what an exper-
iment would observe. But this does not completely solve the problem, I think,
because we cannot tell what will happen in an experiment with deterministic
law as-well when system are chaotic, such as weather systems, so what exactly
is the big improvement? A coin that is flipped has a 50/50 chance of being
heads or tails and it does simply works under the LOM of classical mechanics
(inherently everything will of course be QM), but I believe the improvement
from in QM is that the laws are intrinsically random as supposed being random
due to the complexity of a system.

All of this is just my opinion and anyone who would think otherwise will also
be equally valid, however I feel that the fact the deterministic laws lead to such
problems means that nature would inherently be non-deterministic and there-
fore Newton’s laws and classical mechanics could not have possibly been the
final answer and should have been a signal for physicists in during this time to
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keep looking for how nature really worked 10 and hence the need for Quantum
mechanics.

10I don’t know weather any physicists did infact think of this and realise that the laws of
nature could be deterministic and kept searching for what we now know as Quantum mechanics
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